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Bayesian modeling of cue interaction: bistability
in stereoscopic slant perception
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Our two eyes receive different views of a visual scene, and the resulting binocular disparities enable us to
reconstruct its three-dimensional layout. However, the visual environment is also rich in monocular depth
cues. We examined the resulting percept when observers view a scene in which there are large conflicts be-
tween the surface slant signaled by binocular disparities and the slant signaled by monocular perspective.
For a range of disparity–perspective cue conflicts, many observers experience bistability: They are able to
perceive two distinct slants and to flip between the two percepts in a controlled way. We present a Bayesian
model that describes the quantitative aspects of perceived slant on the basis of the likelihoods of both perspec-
tive and disparity slant information combined with prior assumptions about the shape and orientation of ob-
jects in the scene. Our Bayesian approach can be regarded as an overarching framework that allows re-
searchers to study all cue integration aspects—including perceptual decisions—in a unified manner. © 2003
Optical Society of America

OCIS codes: 330.0330, 330.1400, 330.4060, 330.7310, 330.5510.
1. INTRODUCTION
A task of the visual system is to infer the scene that best
explains our incoming retinal information. This is not a
straightforward task because our three-dimensional (3D)
observations depend not only on the retinal images but
also on the brain’s assumptions about the world.1 One
instance in vision in which a given retinal image produces
a changing 3D observation within an unchanging stimu-
lus is the phenomenon of perceptual bistability. Percep-
tual bistability is an interesting phenomenon because it
creates the opportunity of having two states in neural
processing that are modulated by the brain’s assumptions
about the world rather than the stimulus.

Here we study perceptual bistability by making use of
the distinct binocular and monocular depth information
in an image. In binocular viewing, binocular disparities
arise because our eyes view a scene from slightly different
positions. These disparities enable us to reconstruct the
3D layout. The processing of disparities is, however, not
essential for the 3D reconstruction; monocular cues can
be sufficient to recover 3D structure. For example, linear
perspective is a powerful cue for surface orientation. The
integration of perspective and disparity has been the sub-
ject of quite a few studies.3–12 However, the bistability
that can be created when the monocular and binocular
cues in a scene specify opposite depth information has re-
ceived only little interest in the scientific literature,13–19

and no studies have modeled the quantitative aspects of
this phenomenon.

To evoke bistability, observers viewed ambiguous ste-
reoscopic images of a grid stimulus in which disparity and
perspective specified different slants.24 This stimulus is
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similar to Ames’s famous trapezoid window. Slant here
refers to rotation about a vertical axis through the center
of the stimulus. The grid was viewed against a sur-
rounding frontoparallel reference surface. Figure 1
shows an example of the stimulus used in this study. On
inspection, the reader might be able to distinguish the
two 3D percepts that are present when linear perspective
and binocular disparity specify opposite slants: One per-
cept in which the grid’s slant is near to the disparity-
specified slant, and the other in which the perceived slant
is closer to the perspective-specified slant. The two per-
cepts were never present simultaneously. Most observ-
ers have no difficulty in reporting two distinct slant per-
cepts when presented with stimuli containing large cue
conflicts.

In the following, we describe the results of a psycho-
physical experiment in which we presented stimuli with
highly dissonant disparity and perspective information.
We then present our Bayesian model—the main focus of
this paper—which quantitatively accounts for individual
observers’ data.

2. METHODS
The stimuli (Fig. 1) have been described in detail in a pre-
vious paper.24 In short, the stimuli were planar grids
(subtending 15 deg 3 11 deg in unslanted conditions)
presented dichoptically by a conventional red–green ana-
glyphic technique. A surrounding pattern (92 deg
3 39 deg) consisting of small squares (1 deg 3 1 deg)

provided a zero-slant reference. The stimuli were viewed
on a large (92 deg 3 77 deg) projection screen at a view-
ing distance of 114 cm.
2003 Optical Society of America
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A subject initiated the stimulus onset by a mouse click.
The presentation duration was 10 s, and the subject then
estimated the perceived slant of the grid. The subjects
were instructed that both ambiguous (flip) and nonam-
biguous (nonflip) stimuli would be presented. They were
also informed that the stimuli could be either trapezoidal
or rectangular. Subjects were free to move their eyes.25

Eight subjects participated. All had normal or corrected-
to-normal vision and completed a stereoanomaly test.27

Subjects were naı̈ve to the purpose of the experiment.
The slant-estimation procedure28 is depicted in Fig. 2.

To make the slant estimates, three frontoparallel lines
were presented on the screen after the stimulus presen-
tation. One of the lines was horizontal, and the other
two lines could be rotated about their centers. The hori-

Fig. 1. In this stereogram both perspective and binocular dis-
parity specify surface slant about the vertical axis. In uncrossed
fusion of the stereogram (the left eye views the left image, and
the right eye views the right image), two stable percepts can be
distinguished. In the first percept the grid recedes in depth
with its right side farther away (it is perceived as a slanted rect-
angle). In the other percept the left side of the grid is farther
away (it is perceived as a trapezoid with the near edge shorter
than the far edge). In fact, the slants depend on the viewing dis-
tance; however, the slant signs are conflicting regardless of the
viewing distance. Note that each of the two percepts can be se-
lected and maintained at will in a relatively controlled fashion.
In crossed fusion, perspective and disparity specify similar slants
and the observer perceives a single stable slanted rectangular
grid with its right side further away.

Fig. 2. Schematic drawing of the slant-estimation method rep-
resenting a top view of the viewing geometry. One of the lines
was fixed, and the other two lines could be rotated about their
centers. The fixed line represented zero slant (the image plane
on the frontal screen); each of the other lines represented the per-
ceived grid in either the perspective-dominated percept or in the
disparity-dominated percept. Using this display, subjects
matched the perceived slant(s) to the angle(s) between the fixed
horizontal line and the rotatable intersecting line(s).
zontal line was fixed and represented a top view of the un-
slanted reference; each of the other lines represented the
top view of the perceived grid in either the perspective-
dominated percept or in the disparity-dominated percept.
Subjects were instructed to match the angles between the
rotatable lines and the horizontal line to the two per-
ceived slants. If an observer was not able to experience
bistability, he or she matched both angles to the (single)
slant he or she perceived. Because the lines were dis-
played stereoscopically in the plane of the screen, they
also served as a zero-slant reference between successive
stimuli.29

To investigate systematically how perspective and dis-
parity information contribute to bistable 3D perception,
we varied both disparity-specified slant (270 to 70 deg in
ten steps) and perspective-specified slant (270 to 70 in six
steps). Positive slants are defined as right side away. In
each block of 77 trials, all the stimulus conditions ap-
peared once in random order. There were five trial
blocks.

3. RESULTS
Figure 3 shows the individual data for two subjects. The
plots depict the mean perceived slants across the five trial
repetitions for a range of perspective and disparity slants.
The data for each of the subjects in Fig. 3 can be roughly
split into two domains. In one domain, when disparity
and perspective specified similar slants, then only one
perceived slant was reported. In this domain, slants de-
rived from perspective and disparity have been recon-
ciled; a perceived slant is produced somewhere between
the two. In the other domain, when disparity and per-
spective specified quite different slants, subjects experi-
enced bistability and reported two perceived slants.
Data have been reported for a similar experiment in a
previous paper.24 Although the study did not report in-
dividual subject data on bistability, the two sets of data
followed very similar patterns. In the previous study bi-
stability occurred when the perspective- and the
disparity-specified slants had opposite signs. In the cur-
rent study, bistability also occurred when the two had the
same sign. In the current study, subjects were informed
that the stimuli could be either trapezoidal or rectangu-
lar. In the previous study, subjects were merely asked to
report bistability when they were able to perceive one
plane with its left side in front and another plane with its
right side in front. This difference in instruction could
account for the observers’ slightly different behaviors, al-
though large interobserver differences were observed in
both studies.

It is interesting to consider the observer’s two percepts
in the conditions under which bistability occurred. In
this domain, observers commented that at one of the re-
ported slants the object appeared trapezoidal and at the
other reported slant the object appeared rectangular. Up
to this point we have been referring to our stimuli as ‘‘cue
conflict.’’ However, strictly speaking, our stimuli do not
present a conflict between information sources. All
stimuli are consistent with a real-world object, which may
be trapezoidal or rectangular. The stimuli present a con-
flict only under the assumption that the original object is
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Fig. 3. Perceived slant and the Bayesian fits as a function of disparity-specified slant for a range of different perspective-specified
slants. Each row of panels represents the data of one subject. The top row depicts the best fit that accounted for 93% of the variance
in the data. The bottom row depicts the worst fit that accounted for 79% of the variance in the data. The fits to the data produced by
the Bayesian model are indicated by the gray and black curves. The gray curves indicate the strong rectangular assumption, and the
black curves indicate the weak rectangular assumption. The subjects perceived either a slanted rectangular grid (square symbols) or a
slanted trapezoid (triangles). The slants that were geometrically present in the stimulus are represented by the dashed prediction lines.
Error bars represent 61 standard deviation in the mean across the five trial repetitions.
approximately rectangular. It is only by using this type
of assumption that linear perspective can be informative.
We assume that observers flipped between the two per-
ceived slants by changing the strength of this rectangu-
larity assumption, and this forms the basis of our model.

4. BAYESIAN MODEL
To understand the cue interaction that engenders bista-
bility in stereoscopic slant perception, we developed a
Bayesian model. A Bayesian model combines multiple
sources of information in an optimal way with the ulti-
mate goal of maximizing performance in a particular
task.32 Bayesian modeling has been successfully applied
in computer vision (see the review by Knill and
Richards41), and, in the past decade, several investigators
have started to apply this framework to human
vision.36,38,42–54

In the present paper the multiple sources of informa-
tion to be combined are the stereoscopic cue for slant, the
perspective cue for slant, and a preference (prior) for
frontoparallel. This prior distribution also encompasses
the residual flatness cues in the display (for example, ac-
commodative blur, the fixed graininess of the pixels on the
screen, or the brightness gradient). As described in more
detail in the next paragraphs, the perspective and dispar-
ity likelihoods can be computed directly from the images,
with some basic assumptions about how tolerant to noise
the visual system is. Once combined, likelihood and
prior provide a posterior probability function that assigns
a probability to each possible event in the world, in our
case, each possible slant of the surface. The last stage of
a Bayesian model is a decision rule that translates this
posterior probability into an actual response. Details of
the model are provided in Appendix A.

Linear perspective information in an image can be ex-
ploited only by making assumptions about the orienta-
tions of the contours in the world that are projected onto
the image plane. In our model, perspective information
is interpreted by assuming that the object is roughly rect-
angular. This rectangularity assumption is implemented
by assuming that the orientation of (nonvertical) lines in
the image plane can be described by a Gaussian distribu-
tion centered on zero (horizontal). The width of this
Gaussian is a free parameter in our model and reflects the
strength of the rectangularity assumption. The orienta-
tion of a line in the image can easily be computed from the
orientation of the line on the object, the surface slant, and
other scene parameters (see Fig. 4 and Appendix A). We
assume that any error in measuring the image line orien-
tations is negligible in the context of a robust rectangu-
larity assumption. Given these assumptions, we can cal-
culate the probability, for any surface slant, of getting
lines with the orientations and elevations measured in
the image. This distribution of probabilities of the im-
age, given the surface slant p(IuS), is the perspective
likelihood. By calculating the perspective likelihood in
this way, we are reflecting the amount of information
present in the image at different slants. At large slants,
perspective information is more reliable, and our model
incorporates this (Fig. 5).

The likelihood for the disparity information is modeled
more simply. The disparity likelihood is here modeled as
a Gaussian centered on the true slant of the surface. The
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width of the Gaussian reflects measurement noise and is
the first parameter of the model.

The third distribution to consider is the prior. This is
modeled by a Gaussian centered on zero. This reflects
our prior assumption that objects in the world are close to
frontoparallel, as well as incorporating all residual cues
in the stimulus, such as accommodation, vergence, tex-
ture, and blur cues that are consistent with a frontopar-
allel surface. The spread of this distribution is the sec-
ond parameter of the model.

The optimum way of combining all this information is
multiplication. The product of the two likelihoods and
the prior distributions gives the posterior after normaliza-
tion (the posterior is a probability distribution function,
whereas the likelihoods need not be probability distribu-
tions). From Bayes’s theorem,55 this is proportional to
the probability of the surface slant, given the image,
p(SuI).

In the current experiment, observers are asked to flip
between two percepts—a perspective-dominated slant
and a disparity-dominated slant. We have modeled this
by allowing the model to work in two modes. In the
perspective-dominant mode, we assume that the observer
is implementing a strong rectangularity constraint. In

Fig. 4. Nonvertical stimulus lines change their orientation in
the image plane when the stimulus is rotated about the vertical
axis. (A) Frontal view of an unslanted trapezoidal object (w is
the width, h is the central height, and d is the viewing distance).
The orientation of the depicted stimulus line is u. The 3D coor-
dinates relative to the midpoint between the eyes are explicitly
given. (B) A top view of the object after it has been rotated
through an angle w. (C) A projection of the slanted trapezoid on
a frontal screen. The stimulus line whose orientation was origi-
nally u is now projected with an orientation g [see Eq. (A2) in Ap-
pendix A].
other words, he or she is assuming that the object in the
world was a rectangle, and deviations from rectangularity
in the image are a consequence of perspective projection.
In the model, this translates into a smaller spread of the
Gaussian describing the world line orientation (third pa-
rameter of the model).

In the disparity-dominant mode we assume that the ob-
server is implementing a weak rectangularity assumption
(a fourth parameter to characterize a wider distribution
of line orientations). In other words, the original object
can be a range of shapes. In effect, the influence of per-
spective becomes weaker (the likelihood becomes less
peaked), and the disparity information becomes more
dominant. The first and second parameters (standard
deviation of disparity and prior) are kept constant for
both of these modes. Each of these modes gives a sepa-
rate posterior distribution as its output.

The model then has to decide what to do with the out-
puts of the two (perspective and disparity) modes. We
apply a gain function to the sum of the two posterior dis-
tributions. A gain function is often used in Bayesian
modeling as a smoothing function, which makes the
model robust to local minima.

In our model the gain function is a Gaussian with a
variable standard deviation (the fifth and final model pa-
rameter). The effect of convolving the gain function with
the combined posterior is to produce an expected gain dis-
tribution with a single peak if the two posterior distribu-
tions were sufficiently similar and a distribution with two
peaks if the two posterior distributions were disparate.
The single peak corresponds to observers making a single
response, whereas the double peak corresponds to the two
percepts in the bistable stimuli.59 Using this approach,
we have modeled the bifurcation of responses that the ob-
servers give, arising from a single cue-conflict stimulus
(see also Ref. 60).

Fig. 5. Normalized likelihood p(IuS) for perspective information
computed from the geometry of perspective projection, assuming
that the perceived orientation of each of the horizontal lines pro-
jected onto the image is subject to noise. The noise is assumed
to be Gaussian centered on zero and with a standard deviation.
Each curve shows the likelihood for one of the seven perspective-
specified slants. For larger perspective-specified slants, the
likelihood distribution is more peaked, reflecting an increased
certainty in determining surface slant.
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We found the values of the parameters that provided
the best fit to each individual observer’s data. The best
and the worst fits of the model are plotted in Fig. 3. The
model provides an excellent fit (accounting for 93% of the
variance) to the data of observer WL.61 Even the model’s
worst fit (the one for observer EJ) provides a reasonable
fit that accounted for 79% of the data. Figure 6 shows
the model fits (and also the raw data) for two observers,
AB and KM, who did not follow the data pattern exhibited
by the other eight observers. These subjects participated
in a previous experiment.24 We include their data in the
current paper because they showed interesting behavior
that formed a challenge for our Bayesian model. Obser-
vations of KM seem almost entirely dominated by per-
spective; all data lines are near horizontal, showing little
effect of disparity. In contrast, observer AB shows almost
no effect of linear perspective; the data are similar for all
seven perspective conditions. As can be seen in Fig. 6,
Fig. 6. Same as Fig. 3 but for two observers who did not follow the data pattern shown by the other eight observers. Both AB and KM
observed almost no bistability. The data of AB are dominated by disparity information. The percept of observer KM seems almost
entirely dominated by perspective; all data lines are near horizontal, showing little effect of disparity. Note that in almost all panels the
fits produced by the Bayesian model fall on top of each other for both the weak and the strong rectangularity assumptions. The fits for
AB and KM accounted for 92% and 93% of the variance in the data, respectively.

Table 1. Model Parameters for the Individual Observersa

Mode Dependent Mode Independent

s of Perspective Likelihood s SDb SD
for Rectangularity Assumption of disparity of of

Subjects Strong Weak Likelihood Prior Gain R2

WL (Fig. 3) 0.25 1.21 3.83 8.20 3.08 0.93
EJ (Fig. 3) 0.80 1.27 7.67 6.10 2.38 0.79

AB (Fig. 6) 3.03 7.18 17.35 14.30 1.65 0.92
KM (Fig. 6) 0.04 26.62 9.58 5.93 74.25 0.93

GE 0.40 0.85 5.16 3.86 3.91 0.81
EC 0.40 1.29 5.96 4.95 3.87 0.87
DL 0.31 1.44 4.46 5.93 0.29 0.88
BM 0.22 0.95 4.82 3.62 0.23 0.89
ER 0.61 0.98 5.02 4.14 0.77 0.90
BG 0.40 2.04 7.92 9.07 2.82 0.92

a The model operates in two modes; the perspective-likelihood parameter depends on whether strong or weak rectangularity of the stimulus is assumed.
The other three parameters are mode independent. The last column contains the coefficient of determination R2, an indication of the goodness of fit.

b Standard deviation.
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the model provides a good fit for these two observers who
were dominated by a single cue and did not report bista-
bility.

Table 1 shows the parameters used in the model for all
subjects. The last column of Table 1, the coefficient of de-
termination R2, gives an indication of the goodness
of fit. The model accounts for 88% of the variance in
the data on average (in the range of 79% to 93%). Given
that there are 154 data points per observer (2
modes 3 7 perspectives 3 11 disparities) and only five
parameters, we conclude that our Bayesian model ac-
counts very well for the observers’ performance in this
task.

5. DISCUSSION
We have developed a Bayesian model for the quantitative
aspects of bistability in perceived slant for a large spec-
trum of possible combinations of disparity- and
perspective-specified slants. The model’s account for the
data is twofold. On the one hand, it accounts for the ob-
servation that subjects perceive only one slant when the
perspective- and disparity-specified slants are similar.
On the other hand, it accounts for the observation that
subjects are able to select either a perspective- or a
disparity-dominated slant when the specified orientations
are rather different. The same model can also account
for observers whose data follow a completely different
pattern, by having a very noisy disparity signal (observer
KM) or a very weak rectangularity constraint (observer
AB).

The occurrence of a clear bifurcation has been reported
before in an entirely different study42 that used stereo-
scopic stimuli with mixed vertical disparity information
consistent with two disparate gaze angles. However, this
study did not report on perceptual bistability. Further,
although quite a few other studies have used perspective
and disparity cues that specified depth of opposite
polarity,3,4,8,42,43,62–68 none of these studies reported bista-
bility. This could be because most of these studies have
examined relatively small conflicts or short presentation
times or both; in such circumstances observers might not
notice bistability when they are not explicitly instructed
to look for it.

That our Bayesian approach is rich enough to deal with
both consonant and dissonant slant cues for a range of ob-
servers is an important feature that distinguishes it from
existing models. It encompasses the integration of visual
cues (1) in weak data fusion,69,70 (2) in modified weak
data fusion,71,72 and (3) in strong fusion.43 It is also an
intuitive method by which to model Markov Random
Fields73 and the activity of neural populations.74 A par-
ticular strength of the Bayesian approach, which differen-
tiates it from other fusion models, is that it provides a
natural way to include prior information with the infor-
mation available in the image. In addition, it should be
noted that the above-cited fusion models cannot account
for both fusion and bistability without the addition of cer-
tain ad hoc robustness constraints. Our model can easily
be extended to cues other than perspective and disparity.
In other words, the Bayesian approach, as we developed
it, can be considered an overarching framework in cue in-
teraction theory that allows researchers to study all
above-mentioned cue integration aspects—including per-
ceptual decisions—in a unified manner.

6. CONCLUSION
We have presented a coherent model of bistability in
which each parameter has a clear and interesting mean-
ing. There is one set of parameters (at the chosen view-
ing distance) that can explain perceptual bistability in
stereoscopic vision for the complete spectrum of combina-
tions of perspective and disparity.

APPENDIX A
We provide here details of the Bayesian model used to ex-
plain the cue interaction that engenders bistability in ste-
reoscopic slant perception. The model combines the in-
formation from the perspective and disparity cues (the
likelihood information) with a prior constraint. The out-
come of this combination is then subjected to a decision
rule.

A. Perspective Likelihood
Let u be the orientation of a line on the surface before
slanting that surface relative to the observer. From the
rectangularity constraint, we assume that the orientation
u follows a Gaussian distribution centered on 0 (the hori-
zontal orientation). The strength of the rectangularity
assumption is left as a free parameter in the model and
maps to the spread (standard deviation, r) of the Gauss-
ian:

p~u; r ! 5
1

A2pr2
expS 2u2

2r2 D . (A1)

From the geometry of the scene illustrated in Fig. 4, we
can derive the relationship among the orientation of the
line on the surface (u), the projected orientation of the line
in the image (g), and the slant of the surface ( w):

tan~g! 5
d tan~u! 2 h sin~ w!

d cos~ w!
, (A2)

where d is the viewing distance and h is the height of the
line in the image. In this equation, the world slant ( w) is
understood to span the range (2p/2, p/2), which is all the
surface orientations between left slanted and right
slanted.

From Eqs. (A1) and (A2), we can compute the likelihood
p(gu w; r), which is the probability of obtaining a particu-
lar line orientation given the slant of the surface. In
practice, we simulated this likelihood by generating a
large number of surfaces and storing in a matrix the ob-
tained image line orientations.

B. Disparity Likelihood
The disparity likelihood is assumed here to be a Gaussian
centered on the true disparity-specified slant ( wd), with
the spread ( sd) of the distribution left as a free param-
eter:
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p~du w; sd! 5
1

A2psd
2

expF2~ w 2 wd!2

2sd
2 G . (A3)

C. Prior Constraint
All the residual cues in the stimulus consistent with zero
slant, together with a possible preference for frontoparal-
lel surfaces, are modeled as a single prior constraint.
This prior is assumed to follow a Gaussian distribution
centered on zero slant and with the spread ( sp) left as a
free parameter:

p~ w; sp! 5
1

A2psp
2

expS 2w2

2sp
2D . (A4)

D. Combination of the Likelihoods and Prior
Likelihoods and prior are combined to produce the poste-
rior probability. In general, the posterior represents the
probability that a particular scene parameter (S) is
present, given some image attribute (I), and is obtained
from Bayes’s rule:

p~SuI ! } p~IuS !p~S !. (A5)

In our specific example, the scene parameter we are esti-
mating is slant ( w), and the image attributes are the ori-
entation of the line (g) and the disparity (d). Assuming
independence between the perspective and the disparity
cues, expression (A5) becomes

p~ wug, d; r, sd , sp! } p~gu w; r !p~du w; sd!p~ w; sp!.

(A6)

E. Origin of the Two Modes
Our model works by switching between strong and weak
rectangularity assumptions. This is achieved by ex-
changing the spread of the line orientation on the surface
(u) in Eq. (A1) between a parameter r1 and a parameter
r2 . Therefore two posterior distributions will be ob-
tained, following these two perspective likelihoods. The
disparity likelihood and the prior stay the same for the
two modes.

F. Combination of the Two Modes
A decision is reached by combining the two posterior dis-
tributions and subjecting this combination to a gain func-
tion that makes the system robust to noise (see text for
details). The gain function is a Gaussian centered on
zero with the spread ( sg) left as a free parameter:

G~ w; sg! 5
1

A2psg
2

expS 2w2

2sg
2D . (A7)

This gain function is convolved with the sum of the two
posteriors, to give the expected gain E( w):

E~ w; r1 , r2 , sd , sp , sg!

5 G~ w; sg! * @ p~ wug, d; r1 , sd , sp!

1 p~ wug, d; r2 , sd , sp!].
(A8)

The model’s predictions are then simply the locations of
the peaks of this expected gain function. A single peak
corresponds to observers making a single response. If
there are two peaks, the model predicts two separate re-
sponses corresponding to disparity- and perspective-
dominated percepts.
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