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Figure S1. Predictions for Condition RMS Based on Probability Summation and the Corresponding 
Single Conditions SM and SS 

The framework is introduced in Figure 1, main text. 

(A) We systematically varied the correlation coefficient . The expected speed-up of latencies is largest 
assuming a maximal negative correlation. Critically, Boole’s inequality (see SM+SS) provides an upper 
bound that is not violated. The prediction assuming statistical independence is highlighted by a broken 
line (=0; see Equation 1, main text).  

(B) We extended the probability summation model by allowing for additional noise  when signals are 
processed simultaneously. With additional noise (in % relative to single conditions), violations of Boole’s 
inequality occur for fastest latencies similar to empirical distributions (see Figure 2B, main text). Critically, 
the speed-up of fastest responses comes at the cost of a slow-down of slowest responses. Hence, 
latencies are overall more variable. 



 

 
 
Figure S2. The Redundant Signal Effect with Color and Sound Signals 

Results are analogous to the experiment with motion and sound signals (see Figure 2, main text). 

(A) Mean latencies in the redundant condition RCS were faster compared to single conditions SC and SS 
(mean and SEM of 60 blocks with 50 latencies each).  

(B) Cumulative distributions (circles and shaded areas indicate group quantiles with SEM; best-fitting 
recinormal distributions are shown as solid lines). The shift of the RCS distribution to the left corresponds 
to the speed-up of mean latencies (see A). Numerous quantiles in condition RCS exceeded the theoretical 
bound provided by the sum of distributions in conditions SC and SS (arrow).  
 
 
 
  



 

 
 
Figure S3. Interactions with Color and Sound Signals 

Results are analogous to the experiment with motion and sound signals (see Figure 3, main text). 

(A) Mean latencies depended on the condition that was presented on the previous trial.  

(B) For each group quantile of conditions SC and SS (see Figure S2), we determined the relative 
frequency of color signals presented on the previous trial. A value close to one (zero) indicates that most 
responses summarized by a quantile were preceded by a color (sound) signal.  

(C) The analysis of color frequencies showed a negative correlation between latencies in single 
conditions (Pearson's linear correlation coefficient, H=-0.76, p<0.0001; numerical values of H across 
experiments were by chance identical).  

(D) Based on the single conditions, we fitted the probability summation model with the correlation 
coefficient  as a free parameter to the latency distribution in condition RCS (“Psum”). The empirical 
distribution deviated from Psum in that most quantiles were faster except for the slowest quantiles that 
were slower than predicted (see also E). The extended model with the correlation coefficient  and the 
additional noise  as free parameters provided a reasonable “Fit” to the empirical distribution (best-fitting 
parameters are summarized in Table S2).  

(E) We tested for deviations from Psum using the parameters of recinormal distributions fitted separately to 
the empirical and predicted quantiles of each block. While the mean µ was slightly elevated (one-sample 
t-test, p<0.0001), the standard deviation σ was largely increased (one-sample t-test, p<0.0001). 
 
 
 
  



 

 
 
Figure S4. Predictions with Color and Sound Signals 

Results are analogous to the experiment with motion and sound signals (see Figure 4, main text). We 
presented conditions in separate blocks of trials (SC, SS, and RMS). We included also a new condition in 
which targets were defined by a conjunction of color and sound signals (CCS). 

(A) Mean latencies. While responses in condition RCS were sped-up, responses in condition CCS were 
slowed-down. Mean and SEM of 60 blocks. 

(B) Cumulative distributions. The extended model with the correlation coefficient  and the additional 
noise  as free parameters provided an excellent “Fit” for condition RCS (the best-fitting parameters are 
summarized in Table S2). Using identical parameters, the model nicely predicted the distribution in 
condition CCS. Each distribution is based on 3,000 responses. 



 

 Table S1. Best-Fitting Recinormal Distributions 

Experiment Condition µ (s-1) σ (s-1) RMSE 

     

Random SM 2.222 0.364 0.011 

 SS 2.354 0.482 0.003 

 RMS 2.640 0.355 0.005 
     

 SC 2.288 0.355 0.008 

 SS 2.373 0.481 0.003 

 RCS 2.710 0.341 0.008 
     
     

Block by block SC 2.555 0.290 0.014 

 SM 2.396 0.329 0.010 

 SS 2.522 0.433 0.004 
     

 RMS 2.678 0.389 0.007 

 RCS 2.747 0.384 0.006 
     

 CMS 2.199 0.364 0.013 

 CCS 2.355 0.375 0.015 
     

 
 



 

 Table S2. Best-Fitting Model Parameters 

Experiment Condition Model*   (s-1) RMSE 

      

Random RMS C -0.70 - 0.067 

  N - 0.137 (~32%)** 0.058 

  C+N***
 -0.59 0.097 (~23%)** 0.019 

      

 RCS C -0.82 - 0.094 

  N - 0.182 (~43%)** 0.074 

  C+N***
 -0.72 0.130 (~31%)** 0.022 

      
      

Block by block RMS C 0.10 - 0.030 

  N - 0.042 (~11%)** 0.021 

  C+N***
 0.21 0.059 (~15%)** 0.006 

      

 RCS C 0.13 - 0.045 

  N - 0.059 (~16%)** 0.029 

  C+N***
 0.29 0.083 (~23%)** 0.005 

      

 CMS Prediction from RMS from RMS 0.034 

  C+N -0.04 0.074 (~19%)** 0.010 
      

 CCS Prediction from RCS from RCS 0.022 

  C+N 0.37 0.055 (~15%)** 0.010 
      

*Correlation only (C), Noise only (N), Correlated and noise (C+N).  
**Compared to the average standard deviation in corresponding single conditions (see Table S1).  
***The extended model provided a significantly better fit compared to both restricted models (extra sum-of-squares F 
test, p<0.0001 in all cases). 
 

  



 

Supplemental Experimental Procedures 
 
Experimental Setup  
Participants were tested individually in an isolated experimental room. Auditory stimuli were presented to 
both ears simultaneously through Sennheiser HD-280 Pro headphones. Visual stimuli were presented on 
a Sony GDM-C520 CRT monitor (100 Hz refresh rate). Viewing distance was 60 cm supported by a chin 
rest. A computer running MATLAB (The MathWorks) equipped with standard toolboxes [48, 49] controlled 
stimulus presentation and the collection of responses via the keyboard. 
 
Auditory Stimulation  
Auditory background noise was continuously presented in all conditions. Noise consisted of Gaussian 
noise (i.e., a sequence of normally distributed random numbers at a sample rate of 44.1 kHz) which was 
filtered so that most of the power was between 262-330 Hz. The presentation level of the background 
noise was 53 dB(A) as measured using an artificial ear adaptor. As sound signals, we presented 294 Hz 
tones (the note D) that were embedded in the noise. Tones were presented for 500 ms including 
sinusoidal ramp on- (10 ms) and offsets (100 ms). The presentation level of the tones was 53 dB(A). 
 
Visual Stimulation 
Visual background noise was continuously presented in all conditions. The noise was composed of 200 
white dots (2x2 pixels) on a dark grey background. Dots moved linearly in random directions with a speed 
of 1 deg/s. Dots were restricted to the area of a notional annulus with an inner/outer diameter of 0.5/5.0 
deg around central fixation. On each refresh, dots falling outside the area and some of the remaining dots 
(with a probability of 1%) were randomly re-located within the area of the notional annulus. As visual 
signals, we changed the motion or the color of some dots. With motion signals, 50% of the dots changed 
from random motion to coherent rotation around fixation (0.14 cps). With color signals, 30% of the dots 
turned yellow. In both cases, signals were presented for 500 ms and dots returned to white and random 
motion, respectively. 
 
Task and Procedures 
Participants were instructed to detect target signals by pressing a button. We asked participants to 
respond as fast as possible, but to avoid false alarms and missed targets. We employed a partially self-
paced, continuous stimulation paradigm. Auditory and visual background noise was presented throughout 
a block. After a random interval of 1500-3500 ms (uniformly distributed), a target was presented. At the 
time of a response, a new random interval preceding the next target was triggered.  

We considered responses with latencies within 100-1500 ms after signal onset as valid. Responses 
falling outside this range were false alarms (~2% across all conditions) and missed targets (<1%), 
respectively. After an error, a feedback-screen, which indicated the error, interrupted the continuous 
stimulation for 1500 ms before a new random interval preceding the next target was triggered. 

In Experiment 1, conditions were randomly interleaved within a block. This included two single 
conditions (only the auditory or only the visual signal was presented) and one redundant condition (both 
signals were presented simultaneously; see Figure 1A,B). For each condition, we collected 55 valid 
responses per block. A block lasted about 9 min and was interrupted twice by a pause-screen to offer 
participants a short rest. 

In Experiment 2a, we tested the same three conditions as in Experiment 1 but we presented each 
condition in a separate block of trials. In Experiment 2b, targets were defined by a conjunction of two 
signals (both the auditory and the visual signal were presented simultaneously as in the redundant 
conditions; Figure 1F). Critically, the random interval of 1500-5000 ms preceding a target could contain 
non-target signals (only the auditory or only the visual signal was presented). Participants had to withhold 
a response on presentation of single signals. A block contained about twice as many non-targets than 
targets. In each block of Experiment 2, we collected 55 valid responses. A block lasted about 3-4 min. 

Participants were familiarized with all conditions in a short practice session before the experiment 
proper (about 5-10 min). Participants then performed 4 sessions lasting about 1 h each. To reduce fatigue 
effects, participants performed not more than 2 sessions on a day. Within a session, we presented a 
block of each condition once. Each block was introduced by a start-screen indicating the next condition by 
an animation of possible targets and non-targets. Participants initiated blocks by a button press. At the 



 

end of a block, the start-screen for the next block appeared. We encouraged participants to use these 
occasions to take a rest. The order of conditions/blocks was randomized across observers and sessions. 
 
Latency Analysis  
All analysis and modeling was performed using MATLAB (The MathWorks). We used a reciprocal scale 
(1/latency) for the analysis of response latencies (except for the computation of simple mean latencies). 
Mean latencies of one condition measured with one participant but in different sessions could differ by 
several 10s of ms, which is possibly related to learning or fatigue that might occur across sessions or to 
other general effects. To avoid that such differences affect the shape (and particularly the variance) of the 
estimated group latency distributions [30], we considered each block as an independent sample instead 
of pooling latencies across sessions. To reduce the impact of anticipatory responses and lapses of 
attention, we performed an outlier correction on the basis of the 55 valid responses of each block and 
condition. We rejected trials with latencies deviating by more than 3 standard deviations from the mean 
on the reciprocal scale (about 0.8% of the trials). Then, to obtain equally sized data blocks, we selected 
the latest 50 trials of each block/condition (the first few trials were considered as training and not further 
analyzed). In total, we collected 60 equally sized data blocks summing up to 3,000 latencies per condition 
(39,000 responses were collected for the whole study). 

To obtain cumulative group distributions, we rank ordered the latencies of each block and averaged 
response latencies of each rank on the reciprocal scale (Vincent averaging [30]; e.g., the latency of the 
fastest group quantile is computed by the average latency of the fastest response within each block, and 
so forth for the remaining ranks). With this method, we obtained 50 group quantiles that were based on 
60 responses each. To obtain continuous distribution functions, we fitted recinormal distributions (i.e., 
normal distributions on the reciprocal scale) to the group quantiles of each condition by minimizing the 
root mean squared error (RMSE; using the “fminsearch” routine of MATLAB). Estimates of the mean (µ) 
and the standard deviation (σ) of the group distribution were virtually identical to the averaged estimates 
of the individual blocks. 
 
Trial History Analysis 
For each response in Experiment 1, we recorded the condition that was presented on the previous trial. 
For the 60 responses of a given quantile, we computed the relative frequency of signals that were 
presented on the previous trial. For example, with motion and sound signals, the “motion frequency” is 
given by the number of motion signals divided by the total number of sound and motion signals on the 
previous trial. Note that the total number of signals could be larger than 60 because two signals were 
presented in redundant conditions. 
 
Model 
We predicted the latency distribution with redundant signals based on probability summation. The exact 
distribution is given by the minimum function of the latency distributions in the single conditions, which 
can be estimated using the maximum function of the corresponding drift rate distributions (Figure 1C-E). 
For two Gaussian random variables the exact maximum function is known [34]. Let (DA, DV) denote a 
bivariate Gaussian random vector with means (µA, µV), variances (σA

2, σV
2) and correlation coefficient . 

The probability density function of the maximum distribution is given by f(x) = f1(– x) + f2(– x), with 
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where () and () are the probability density function and the cumulative distribution function of the 
standard normal distribution, respectively. Thus, with the drift rates DA ~ N(µA, σA

2) and DV ~ N(µV, σV
2) as 

determined in the single conditions, the probability summation model had only one degree of freedom, 
i.e., the correlation coefficient .  



 

To model the noise interaction in redundant conditions, the interaction noise  is added to the 
standard deviation of the two drift rates as determined in the corresponding single conditions. Thus, if drift 
rates DA ~ N(µA, σA

2) and DV ~ N(µV, σV
2) were determined in single conditions with auditory and visual 

signals, we used the adapted drift rates DA’ ~ N(µA, (σA + )2) and DV’ ~ N(µV, (σV + )2) for model 
predictions of the redundant condition. Model predictions were then computed analogously to predictions 
based on probability summation using the adapted drift rates (see Equations S1 and S2). Thus, the 
extended model had two degrees of freedom, the correlation coefficient  and the additional noise . We 
fitted the model to empirical distributions by minimizing the RMSE. Model fitting and prediction of latency 
distributions with conjunction signals was performed analogously using the minimum instead of the 
maximum function [34] of the corresponding drift rates. 
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