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ABSTRACT—Overconfidence can place humans in hazard-

ous situations, and yet it has been observed in a variety of

cognitive tasks in which participants have to rate their own

performance. We demonstrate here that overconfidence can

be revealed in a natural and objective visuo-motor task.

Participants were asked to press a key in synchrony with a

predictable visual event and were rewarded if they suc-

ceeded and sometimes penalized if they were too quick or

too slow. If they had used their own motor uncertainty in

anticipating the timing of the visual stimulus, they would

have maximized their gain. However, they instead dis-

played an overconfidence in the sense that they underesti-

mated the magnitude of their uncertainty and the cost of

their error. Therefore, overconfidence is not limited to

subjective ratings in cognitive tasks, but rather appears

to be a general characteristic of human decision making.

Overconfidence refers to the human tendency to overestimate

one’s own abilities and knowledge (Alpert & Raiffa, 1982; Osk-

amp, 1965). Overconfidence is believed to have dramatic con-

sequences in such diversified areas as warfare (Johnson et al.,

2006), stock-exchange trading (Statman, Thorley, & Vorkink,

2006), and driving (Svenson, 1981). One methodological diffi-

culty that has hampered research in this field, to the point that the

very existence of overconfidence has been challenged (Ayton &

McClelland, 1997; Gigerenzer, Hoffrage, & Kleinbölting, 1991;

Keren, 1988; Koriat, Lichtenstein, & Fischhoff, 1980), is the

reliance of previous studies on self-report measures. Up to now, it

has been difficult to avoid using such subjective measures to

study this form of knowledge about knowledge, or metacognition

(Metcalfe & Shimamura, 1994). The problem with subjective

reports is that they can be imprecise and strongly biased (Adams

& Adams, 1961). We report here the results of an objective par-

adigm revealing overconfidence in a simple motor action.

Planning of motor movements often requires accurate timing.

A tennis player who masters all the right movements but who

times them a bit too early or too late will see all the balls go

outside the court. Similarly, a violinist needs to be synchronized

with the rest of the orchestra. Such sensorimotor interactions

have been studied in tapping experiments in which participants

have to synchronize a repetitive motor act with a repetitive

sensory stimulus (Aschersleben, 2002; Fraisse, 1966; Wing,

2002). In the study reported here, we reduced sensorimotor

synchronization to its simplest form by asking our participants to

synchronize a single motor action with the anticipated time of a

visual event.

Participants had to press a key at the time of the last visual event

in a sequence of three. The events were presented at a constant

pace, so that participants could estimate the timing of the last

event relative to the second one by reproducing the temporal in-

terval between the first two events. To keep uncertainty in this

visual timing to a minimum, we kept this interval (stimulus onset

asynchrony, SOA) constant (0.5 s) throughout the experiment. The

visual display consisted of the successive presentation of pairs of

dots at the vertices of a virtual hexagon (see Fig. 1). It is important

to emphasize that participants had to anticipate the timing of the

last pair of dots; if they simply reacted to the presentation of the

completed stimulus, they would always be too late by a few

hundred milliseconds.

To measure participants’ confidence in their performance of this

task, we needed to introduce a risk factor. If participants re-

sponded accurately within a narrow temporal interval, they re-

ceived 100 points. In addition, depending on the condition shown

graphically at the beginning of the trial, they might lose 200 points

if they were too fast or too slow. Thus, three experimental condi-

tions were intermixed: no-penalty, late-penalty, and early-penalty

conditions.

There was an optimal time at which participants should have

anticipated the onset of the final visual event in order to maximize

their gain. This optimal time was a function of their motor vari-

ability and the potential cost of their action. Consider, for example,

Address correspondence to Pascal Mamassian, Laboratoire Psycho-
logie de la Perception, CNRS & Université Paris Descartes, 45 rue des
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the late-penalty condition. In this case, the utility function u(t) was

a reward region that was 50 ms long and centered on 1 s (twice the

SOA), followed by a penalty region that was also 50-ms long (see

Fig. 2, top row):

uðtÞ ¼ 100 if t 2 ½975; 1;025�;
uðtÞ ¼ �200 if t 2 ½1;025; 1;075�;
uðtÞ ¼ 0 otherwise:

8<
:

Note that in this task, hitting uncertainty is well modeled as a

Gaussian distribution, h(t), that is centered on zero and has a

standard deviation sI (the subscript ‘‘I’’ reflects the fact that the

source of noise is internal). In contrast, in reaction time studies,

an action is triggered as quickly as possible in response to a

sensory stimulus, and time distributions are characteristically

skewed (Luce, 1986). The expected gain in our task is simply

the convolution of hitting uncertainty with the utility function

Fig. 1. Illustration of the display sequence. The completed stimulus consisted of six dots displayed at the vertices of a
virtual hexagon. The dots were presented in pairs, each pair consisting of dots at opposing vertices. The stimulus onset
asynchrony (SOA) between the first two pairs equaled the SOA between the last two pairs (500 ms). Participants were
instructed to maximize their gain by hitting a key simultaneously with the presentation of the last pair of dots. On each
trial, they gained points if they hit the key during the reward interval, and in some conditions they lost points if they hit the
key during a penalty interval. These intervals were displayed graphically as small colored segments (green for reward and
red for penalty) around the hexagon. Because the dots were presented in a clockwise manner, a red region to the right of
the green one represented a late penalty, as illustrated here. The width of each colored region was indicative of the length
of the temporal interval; each successive pair of dots in the display represented a rotation of 601 over an interval of 500 ms,
so a 50-ms reward or penalty period was indicated by a region of 61. The number of reward or penalty points was written
next to the corresponding colored region.
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(Mamassian, Landy, & Maloney, 2002; Trommershäuser, Maloney,

& Landy, 2003):

gðtÞ ¼ hðtÞ � uðtÞ:
Expected gain reaches a maximum value gn at time tn, the

optimal hitting time:

t� ¼ arg maxtðgðtÞÞ
g� ¼ gðt�Þ

In the late-penalty condition, this optimal time was earlier than

the center of the reward region in order to minimize the number of

times hits would fall in the penalty region. The larger the spread of

hitting uncertainty, the earlier the optimal time (Fig. 2, second

row). Similarly, with a larger penalty, the optimal time would have

been earlier (Fig. 2, last row).

METHOD

Participants

Participants were volunteers from the community around the re-

search laboratory. The design of the experiment received approval

from the institutional review board, and all 10 participants gave their

informed consent. Their age ranged from 23 to 54 years (M 5 32).

Apparatus and Stimuli

Each visual stimulus was presented in three consecutive events on

a 21-in. CRT monitor running with a 60-Hz refresh rate. Each

event consisted of the presentation of a pair of highly visible

Gaussian blobs located at the vertices of a virtual hexagon. The

SOA between the first two events equaled the SOA between the

last two events and was fixed at 500 ms throughout the experiment.

Fig. 2. Model predicting optimal hitting time in the anticipatory motor task. The top row explains the predictions for the late-
penalty condition, given a participant whose motor uncertainty is a Gaussian distribution with a standard deviation of 25 ms. The
graph on the left shows the utility function in this condition, that is, the number of points to be gained as a function of the timing of
the key press. The graph in the middle shows the hitting variability of this participant when aiming at a target presented at time
zero. The graph on the right shows the resulting expected utility of this participant as a function of the hitting time that the
participant is aiming for. When there is a penalty for pressing the key shortly after the target event, which occurs 1 s into each
trial, a participant should aim to hit the key a bit earlier than 1 s in order to maximize gain, as shown by the green dot. The early-
penalty condition has the mirror-symmetric utility function, and therefore the mirror-symmetric expected utility. No time shift is
expected in the no-penalty condition. The middle row presents corresponding graphs for a participant whose motor uncertainty is
twice as large as in the top row and for whom the utility function is the same. The bottom row presents corresponding graphs for a
condition in which the late penalty is increased from 200 to 500 points. When hitting variability is increased (middle row), the
anticipation should be increased, and when the penalty cost increases (bottom row), the anticipation should be greater still.
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Procedure

Participants were instructed to press a key simultaneously with

the completion of the visual stimulus (i.e., the third event). If they

pressed the key accurately within a narrow temporal interval (i.e.,

within the 50-ms interval centered around the third event), they

received 100 points. In addition, in the penalty conditions, they

lost 200 points if they were too slow or too fast. In the early-

penalty condition, the penalty was imposed if they pressed the key

75 to 25 ms before the third event, and in the late-penalty con-

dition, the penalty was imposed if they pressed the key 25 to 75 ms

after the third event. The condition was shown graphically at the

beginning of each trial. Participants started each session of 30

trials (10 trials of each of the three penalty conditions, in a ran-

domized order) with 5,000 points and were instructed to maximize

their gain. They received visual feedback after each trial. The

feedback information consisted of their current score and the

message ‘‘Too Late’’ or ‘‘Too Early’’ if their hit fell outside the

reward interval. Participants completed 20 such sessions, divided

into four consecutive blocks. They were allowed to take short

breaks between blocks (without leaving the room).

To find the optimal hitting time, participants required knowl-

edge of the utility function (which was symbolically provided

before each trial), as well as their own internal hitting uncertainty.

This optimal time could be computed from the model presented in

the introduction. We checked the normality of hitting variability

using a QQ plot of the data against the standard normal distri-

bution (Evans, Hastings, & Peacock, 2000).

RESULTS

Mean hit times in all three penalty conditions are illustrated in

Figure 3a. The figure shows hit times averaged across all 10 par-

ticipants.1 Hit times were characteristically too late at the begin-

ning of the experiment and gradually became less biased during

later sessions; the effect of session on hit times was significant,

F(19, 38) 5 4.81, p< .001. The initial motor delay may reflect an

overestimation of the interval between the first two events of the

visual stimulus. Such a bias toward overestimating the duration of

the first interval in a sequence relates to a classical phenomenon

called time-order error (Allan, 1977). The reduction of this bias

over time reflects a recalibration of the visuo-motor system.

Mean hitting times in the three penalty conditions differed

significantly, F(2, 38) 5 65.3, p < .001. As expected, the early-

penalty condition generated later hitting times compared with the

no-penalty condition, and the late-penalty condition generated

earlier hitting times compared with the no-penalty condition.

Thus, participants were able to appropriately take into account

the type of penalty, at least in a qualitative way.

To determine how efficient participants were in face of the

various penalty conditions, we needed to estimate their indi-

vidual variability in hitting time. Figure 3b shows hitting-time

variability across sessions. It is clear that as sessions went by,

participants’ variability decreased, F(19, 38) 5 2.17, p 5 .021.

As a result of this motor learning, the standard deviation of the

distribution of hitting times shrank from 40 ms at the beginning of

the experiment to 29 ms at the end. In addition, all three penalty

conditions were associated with the same variability, F(2, 38) 5

1.86, p 5 .169. In particular, the early- and late-penalty con-

ditions did not generate larger variability than the no-penalty

condition, as would be expected if participants were trying to

figure out the optimal strategy by trial and error. Therefore, in the

model we used to predict optimal behavior, we pooled the esti-

mate of hitting variability across all three penalty conditions.

Once we knew the hitting variability for a given participant and

session, we were able to compute the expected optimal behavior

for that participant and that session according to the model de-

scribed earlier (see Fig. 2). From this model, we computed both

Fig. 3. Mean (a) timing error and (b) standard deviation of hitting times
as a function of session. Timing error was calculated as the time differ-
ence between the motor action and the last visual event. Standard devi-
ation of the hitting times is a measure of the motor uncertainty of the
participants. In each graph, results are shown separately for the three
penalty conditions. Error bars indicate standard errors across partici-
pants.

1Individual participants’ data are included in the supplementary materials
available on-line (see p. 606).
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the expected score and the shift in hitting time that would lead to

maximum gain. Figure 4a shows both expected and actual scores,

averaged across participants. Given that hitting variability de-

creased across sessions, the expected scores increased over the

course of the experiment; across the four blocks of sessions, the

increase was significant, F(3, 16) 5 10.3, p< .001. The reduction

in hitting variability also induced a significant increase in the

actual scores across sessions, F(3, 16) 5 11.4, p < .001. Ex-

pected and actual scores increased at the same rate. However,

participants’ scores started and remained significantly below the

expected scores, paired t(19) 5 11.4, p < .001. In other words,

even though participants became gradually less variable, they did

not learn how to avoid the penalty periods.

The expected time shift relative to the no-penalty condition

was positive in the early-penalty condition (i.e., participants

should have delayed their hitting time a bit) and negative in the

late-penalty condition (i.e., participants should have sped up

their hitting time a bit). Because of the symmetry in the design of

the experiment and the symmetry in hitting variability, these two

expected shifts were equal in absolute value and can therefore be

represented as a single prediction (see Fig. 4b). Given that the

variability in hitting time decreased across sessions, the pre-

dicted time shift also decreased across sessions, F(3, 16) 5 11.3,

p < .001. Similarly, the absolute values of the measured shifts,

taken from the data shown in Figure 3a, did not differ between the

early- and late-penalty conditions and were therefore combined

into a single measured shift for each session. Across sessions,

these mean measured shifts were significantly larger than zero,

t(19) 5 9.33, p < .001 (one-tailed), confirming that the hitting

times in the penalty conditions did differ from hitting times in the

no-penalty condition. However, the mean measured shifts did not

vary significantly across sessions, F(3, 16) 5 0.52, p 5 .673. In

addition, they differed significantly from the expected shifts,

paired t(19) 5 10.4, p< .001. In other words, the results for time

shifts confirmed the results for scores. Even though participants

became gradually less variable in their motor behavior, their

strategy in dealing with early and late penalties remained sub-

optimal.

DISCUSSION

The early- and late-penalty conditions induced participants to

shift the timing of their hits away from the timing in the no-penalty

condition, but participants did not shift their hitting times enough.

According to the model presented in the introduction (see Fig. 2),

there are two possible reasons why participants’ performance was

suboptimal: They either underestimated their own motor vari-

ability or underestimated the effective cost of the penalty periods.

Both of these reasons can be characterized as overconfidence in

the face of visuo-motor risk. Participants undervalued some ex-

plicit knowledge (the magnitude of the cost) or some implicit

knowledge (the variance of their hitting uncertainty).

In a first attempt to disentangle these two possible sources of

overconfidence, we conducted two further experiments.2 In one

experiment, without telling the participants, we artificially in-

creased their motor variability during the middle 10 sessions by

adding external noise to their responses before feedback was

provided. The external noise in each trial was sampled from a

zero-mean Gaussian distribution with a 50-ms standard devia-

tion. To maximize their scores, participants should have tried to

estimate their new effective variability and increased their time

shifts accordingly. Although our manipulation produced a dra-

matic change in the expected time shifts, it had no effect on the

measured time shifts. Therefore, it seems that participants were

reluctant to update their estimates of their own uncertainty.

Looking at the participants’ behavior after we suppressed the

Fig. 4. Expected and actual (a) scores and (b) time shifts as a function of
session. Participants started each session with 5,000 points. Expected
scores were computed from the model illustrated in Figure 2 and the
motor uncertainty of each participant taken separately. Error bars
represent standard errors across participants. Time shift was calculated
as the difference in timing error between the early-penalty and no-penalty
conditions (early shift) or between the no-penalty and late-penalty con-
ditions (late shift). The mean time shift is the average of the late and early
shifts. The expected time shift was computed from the model. Mean shifts
smaller than the expected shift represent overconfidence.

2These experiments are discussed in more detail in the supplementary ma-
terials available on-line (see p. 606).
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added noise, we saw no effect of the exposure to a large increase

in effective uncertainty, a further indication that participants did

not change their estimates of their own uncertainty during the

added-noise period.

In the other experiment, we imposed a larger penalty of 500

points during the middle 10 sessions. This time, participants were

clearly aware of the manipulation. Both the expected and the

measured time shifts increased over the period when the penalty

was increased, but the measured shifts remained largely smaller

than the expected ones. Therefore, it seems that participants dealt

with a change in cost slightly better than they dealt with a change

in variability. Although other studies have found that people can

adapt very well to different cost functions (Trommershäuser et al.,

2003), the relative inefficiency of our participants in adjusting

their behavior might reflect the difficulty of converting a cost

value presented symbolically into something meaningful for the

motor system.

Our results provide a clear demonstration of overconfidence in

an anticipatory motor task. Participants did take into account the

costs of responding too quickly or too late, but their adjustments

were not optimal. Their overconfident behavior came from limited

knowledge about their motor timing uncertainty and also, but to a

lesser extent, from difficulties in translating a cost magnitude into

an appropriate action. It may be that the ability to adjust hitting

times appropriately to experimental conditions is one of those

behaviors that cannot be learned (Breland & Breland, 1961), or

that our participants simply lacked enough training to perform

near-optimally (Körding & Wolpert, 2004). Even if that behavior

could be learned, it would remain interesting that it did not change

over the course of the experiment, even though motor learning did

take place, as indicated by the reduction in hitting variability.

Therefore, overconfidence is not limited to the realm of subjective

beliefs and cognitive judgments, but appears instead to reflect a

general characteristic of human decision making.
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SUPPLEMENTARY MATERIAL

The following supplementary material is available for this ar-

ticle:

Individual Differences and Supplementary Experiments

This material is available as part of the on-line article from http://

www.blackwell-synergy.com/doi/full/10.1111/j.1467-9280.2008.

02129.x (this link will take you to the article’s abstract).

Please note: Blackwell Publishing is not responsible for the

content or functionality of any supplementary materials sup-

plied by the authors. Any queries (other than queries about

missing material) should be directed to the corresponding

author for the article.
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