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 learning14. In turn, their influences may be 
transmitted by way of the auditory cortex to 
lower parts of the auditory pathway, as sug-
gested by the loss of learning-induced behav-
ioral plasticity after the selective elimination 
of layer V pyramidal neurons that project to 
the inferior colliculus15. The study by Fritz 
and colleagues3 implies that prefrontal corti-
cal neurons might create a flexible framework 
for focusing attention on behaviorally relevant 
sounds and provides an intriguing insight into 
the brain circuitry that allows the dynamic 
processing of sensory information.
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to describe the functional  organization of 
 prefrontal cortex in both human and non-
human primates also applies to ferrets. Do 
equivalent regions exist that are devoted to 
spatial working memory and to the process-
ing of object features or object-related working 
memory10? Fritz and colleagues3 found that 
neurons responding during auditory and/or 
visual tasks were intermixed in ferret frontal 
cortex, suggesting a lack of modality specificity. 
Given how widespread multisensory conver-
gence is, even in ferret auditory cortex11, this 
is not surprising, but further work is obviously 
needed to characterize the inputs to different 
parts of the frontal cortex in this species.

The frontal cortex is not the only forebrain 
region thought to be involved in adjusting 
the cortical processing of sensory signals. 
Cholinergic inputs from the basal forebrain also 
seem to mediate attention and learning by mod-
ulating the responsiveness and tuning proper-
ties of cortical neurons in ways that enhance the 
representation of behaviorally relevant stim-
uli12. Recent evidence points to the existence 
of a sensory cortex–prefrontal  cortex–basal 
forebrain loop13 comprising neural compo-
nents capable of integrating bottom-up sensory 
input with top-down attentional processing and 
inputs from the limbic system. Such a loop has 
the potential to respond to real-time changes 
in task demands by way of the prefrontal cor-
tex and to induce changes in neuronal firing in 
auditory cortex by the action of the cholinergic 
inputs from the basal forebrain.

These circuits are also likely to provide the 
mechanism by which top-down inputs dictate 
how the response properties of A1 change in 
a task-specific fashion during perceptual 

itself show that outputs from the frontal cortex 
are responsible for the task-dependent modu-
lation of A1 neurons, but it does suggest that 
top-down attentional control can be directed 
in a frequency-specific fashion that reflects the 
tonotopic organization of A1.

Particular mention should be made of the 
animal model used in this study. Although pre-
vious work on the influence of prefrontal cortex 
on processing in sensory cortical areas has been 
dominated by research on primates5,6, ferrets 
provide another option for studying the effects 
of attention and learning on hearing. They can 
be trained on a variety of tasks and are now 
widely used in auditory neuroscience research. 
Nevertheless, it is not a straightforward matter 
to show that activity in frontal cortex reflects 
target recognition as opposed to motor plan-
ning in the behavioral procedure, which was 
chosen by Fritz and colleagues3 for its ease of 
use with ferrets. By correlating activity with 
task-related licking, the authors attempted to 
isolate any contributions resulting from motor 
behavior. However, there is no doubt that the 
use of an approach that dissociates sensory 
and motor effects, such as a delayed matching-
to-sample procedure7, would be desirable, 
although it remains to be seen whether ferrets 
can be trained to perform such a task.

Another issue concerns our primitive 
understanding of frontal cortex in nonprimate 
species. Fritz and colleagues3 propose that 
the region they recorded from is likely to be 
homologous to primate prefrontal cortex and 
this is supported by recent anatomical data8. 
Several questions naturally follow from this. 
Foremost among these is whether the domain 
specificity hypothesis put forward  previously9 
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We speak of the perception of time and tem-
poral duration even though, unlike for primary 
sensations (for example, loudness, pitch, lumi-
nance or pressure), there is no specific sensory 
organ that encodes duration per se and one can 
in fact estimate durations both in and across 
sensory modalities. However, the perception of 
duration shares several traits with other sensory 
capabilities. Estimation of temporal duration 
follows Weber’s law (also called the scalar vari-
ability property2): uncertainty scales with dura-
tion. Perceived duration is often biased3. For 
example, when humans are asked to reproduce 

it’s that time again
Pascal Mamassian & Michael S Landy

How do we estimate the duration of a temporal interval in a familiar context? A new study finds that it is appropriate, 
perhaps even advantageous, to tolerate a small bias in our estimate to reduce the overall temporal uncertainty.

the lost time and catch up with your competi-
tors. If you start too early, you may be disquali-
fied for a false start. You cannot wait for the 
starting pistol to plan your start, as that will 
certainly lead to a slow start. Rather, you must 
listen for “Ready” and “Set” and predict the 
correct starting time on the basis of that time 
interval and prior knowledge of the rhythms 
typical of race calls. Using a laboratory model, 
Jazayeri and Shadlen1 studied this task to 
understand how humans combine uncertain 
sensory information and prior knowledge in 
the estimation of duration.

Your feet are in the starting blocks and the 
race official calls, “Ready... Set... Go!” To win 
the race, you must push off on time. If you 
start too late, you may not be able to make up 
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time domain5,9; consider the different costs 
of under- and over-estimation of the time to 
arrive at an appointment or the time until you 
should have your car brakes checked.

To what extent did the participants in 
Jazayeri and Shadlen’s experiment1 have 
access to the appropriate prior, their  temporal 
 uncertainty and a rational loss function? 
The authors showed that participants had 
knowledge of the prior because timing bias 
differed across the three temporal contexts. 
In particular, the same cued duration was 
reproduced differently in different contexts, 
always biased toward the mean of the current 
context. The authors also confirmed that par-
ticipants had some knowledge of their tem-
poral uncertainty5,9 (at least implicitly). In 
particular, they argue that participants knew 
about the scalar variability that rules their 
temporal uncertainty; variability was larger for 
larger mean durations, so a greater bias was 
obtained. Unfortunately, temporal uncertainty 
was not measured independently so it is not 

reproduce the current duration measurement; 
this corresponds approximately to maximum-
likelihood estimation. This second strategy 
would result in maximal accuracy, but lower 
precision, as sensory measurements are uncer-
tain and the participant is ignoring a potential 
source of information (the prior). The best 
trade-off between accuracy and precision will 
depend on the magnitude of the uncertainty. In 
a Bayesian model, the greater the uncertainty, 
the more the estimate regresses to the mean 
of the prior. The amount of bias will depend 
on the choice of the loss function. Small biases 
are obtained when the loss function rewards 
only correct estimates: maximum a posteriori 
estimation (Fig. 1). In contrast, larger biases, 
but smaller variability, are obtained when a 
quadratic loss function is used: Bayes least-
squares estimation. This latter loss function 
may penalize large errors more than human 
participants do7. One should also consider 
asymmetric loss functions8. Asymmetric 
loss functions are particularly critical in the 

various temporal intervals, longer durations are 
perceived as being shorter than the reference 
and the opposite is true for short durations. This 
phenomenon of regression to the mean, known 
as Vierordt’s law4, is one of the most robust 
effects in time perception, but has not been 
convincingly explained. In this issue, Jazayeri 
and Shadlen1 find that the bias to underestimate 
long intervals and to overestimate short ones is 
a consequence of becoming familiar with the 
range of event durations in a particular context. 
Moreover, this context-based bias improves per-
formance in the sense of optimizing the tradeoff 
between bias and variability.

In Jazayeri and Shadlen’s experiment1, 
human participants saw two flashes of light in 
succession (Ready and Set) and were required 
to press a key (Go) so that the temporal inter-
val between the first and second flash was 
equal to the interval from the second flash to 
the keypress5. In each block of experimental 
trials, the displayed durations were chosen 
randomly and uniformly across a fixed range; 
for example, this ‘temporal context’ might 
range from approximately 500 to 850 ms. The 
authors found that participants produced dura-
tions that were biased toward the mean of the 
temporal context and that this bias increased 
with increases in the mean of the context.

Bayesian models, now prevalent in models of 
perceptual-motor behavior (for example, ref. 6), 
offer a natural setting to explain this temporal 
bias. Here, we only discuss the perceptual side of 
the problem. Bayesian models are based on three 
elements: the likelihood function, the prior prob-
ability distribution (usually called the prior) and 
the loss function (Fig. 1). The likelihood func-
tion represents the observer’s knowledge of mea-
surement uncertainty—that is, the probability 
of obtaining the current duration measurement 
given possible durations that might have actually 
occurred. The prior is the observer’s knowledge 
of the statistics of the world; for the Jazayeri 
and Shadlen experiment1, the prior represents 
knowledge of the temporal context. Finally, the 
loss function represents the cost to the observer 
for making a particular estimate; in this case, the 
cost of reproducing an estimated duration that 
differs slightly from the true duration.

The loss function for perceptual estima-
tion can be thought of as the compromise 
between accuracy (the amount of bias) and 
precision (the variability of the estimate). 
Consider two extreme strategies. First, partici-
pants could ignore the current stimulus and 
instead estimate the duration to be the mean 
of recently experienced durations. This first 
strategy would result in excellent precision 
(no variability), but clearly this is achieved at 
the expense of increased bias. Alternatively, 
participants could ignore the prior and simply 
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Figure 1  Bayesian models of duration estimation. Left, the participant must anticipate the Go 
signal after seeing the Ready and Set preparation signals. Knowing that the variable interval between 
Ready and Set is identical to the interval between Set and Go, what is the best strategy to predict the 
occurrence of the Go signal? A Bayesian decision maker answers this question by combining several 
pieces of information. The first piece of information is the likelihood function, which represents the 
probability of making the measurement the participant has just made of the present duration from 
Ready to Set given various possible true durations. The second is the prior probability distribution, 
which represents the accumulated knowledge of interval durations over past races. The product of the 
likelihood function and the prior distribution determines the posterior distribution: the probability of 
various possible estimates of the interval duration given the current measurement. The final piece of 
information is the loss function, which represents the costs associated with correct and incorrect 
estimates. Combining the posterior distribution with the loss function gives the expected loss: the 
anticipated cost associated with different duration estimations. The minimum of the expected loss 
(dashed green line) corresponds to the optimal Bayesian decision. It is negatively biased relative to 
the correct duration as a result of the prior (most previous race start cadences had a shorter duration). 
Right, three Bayesian models of duration estimation for true durations chosen from the lowest range 
of durations used in the Jazayeri and Shadlen study1. Each plot shows mean (±1 s.d.) estimates for 
1,000 simulated races. For maximum a posteriori estimation, the loss function (inset) penalizes all 
errors equally. This model is accurate (weakly biased) but not very precise (large variability of the 
estimates). For Bayes least-squares estimation, the loss function is quadratic. This model has smaller 
variability, but larger bias, especially for long durations as a result of the increased uncertainty of 
the likelihood function for longer durations (the scalar variability property). For the asymmetric loss 
function model, late starts are penalized more than early starts. The accuracy and precision of this 
model are similar to those of the Bayes least-squares model. The larger biases for longer durations are 
now the result of the high cost for overestimates, even if the participant’s internal model of likelihood 
is incorrect (no scalar variability).
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clear whether participants have perfect knowl-
edge of their own uncertainty. Finally, Jazayeri 
and Shadlen1 found that participants’ behav-
ior was consistent with a quadratic loss func-
tion so that the optimal estimate is the mean 
of the posterior distribution. However, other 
combinations of assumed priors,  temporal 
 uncertainty and loss functions might have 
been consistent with their results (Fig. 1).

For the Bayesian modeler, there are three 
unknown functions: the likelihood, prior and 
loss function. This multiplicity of unknowns 
is particularly vexing, as the data only tell us 
the participant’s average response to any given 
stimulus. This stimulus-response function 
might result from more than one Bayesian 
model. For example, larger bias for long dura-
tions results from a likelihood implementing 
scalar variability combined with a quadratic 
loss function, but similar results are obtained if 
the participant assumes variability is constant 
and uses an asymmetrical loss function with 
high cost for overestimation (Fig. 1). Previous 
studies have used a variety of approaches to 
reduce the number of unknowns. For sensory 
experiments, the likelihood function can be 
measured by determining the observer’s abil-
ity to discriminate similar stimuli (for example, 
ref. 10). The prior distribution can be imposed, 
as it is in Jazayeri and Shadlen’s study1, with 
training sessions so that participants have an 
opportunity to learn the prior. It can be mea-
sured from the environment and one can ask 

whether perceptual biases are consistent with 
the participant computing a Bayesian estimate 
using this natural prior (for example, ref. 11). 
Alternatively, experiments can be designed 
to estimate the shape of the prior used by the 
observer12. The loss function can be imposed 
by the experimenter13. Finally, sensory informa-
tion can be removed so that performance can 
only be based on the prior and loss function.

How can the experimenter be assured the 
participant is truly carrying out the Bayesian 
computation, rather than a simpler heuristic 
that has the same net effect? In Jazayeri and 
Shadlen’s experiment1, participants received 
feedback for responses that were sufficiently 
close to the correct duration. Thus, it is rea-
sonable to ask whether the resulting biases 
were learned by effectively computing a lin-
ear regression of produced intervals that led 
to positive feedback as a function of the corre-
sponding measured intervals. A true Bayesian 
computation would imply that the participant 
has knowledge of the likelihood, prior and loss 
function, and can use those elements when 
one of them, such as the context (prior), is 
changed14. One strength of the Jazayeri and 
Shadlen study1 is that observers were naturally 
exposed, in different sessions, to three different 
temporal contexts (ranges of displayed dura-
tions) and these priors were learned effort-
lessly. Other priors can be updated given 
sufficiently convincing feedback, such as the 
default prior knowledge that light comes 

from above our head15. It is also surprisingly 
easy for participants to form nearly optimal 
strategies in pointing tasks to a visual target 
with arbitrary,  experiment-imposed payoffs 
and penalties13. The ability of human partici-
pants to readily adapt to changes in context 
or loss function constitutes strong evidence 
for Bayesian decision theories of perceptual-
motor performance14.
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An abundance of grid cells
Several different classes of neurons are involved in the mapping of allocentric space. 
Two such classes, place cells and head-direction cells, have been found throughout the 
medial temporal lobe memory areas, including the presubiculum, parasubiculum and 
 entorhinal cortex. Place cells represent spatial locations and features of the environment 
and head-direction cells are sensitive to the orientation of a rat’s head with respect to the 
 environment. A third major class of cells, known as grid cells, was recently identified in the 
medial  entorhinal cortex (MEC). Grid cells, which encode abstract  spatial structure, are of 
great interest because, unlike place cells, their response properties are independent of any 
 particular environment, suggesting that they are involved in path integration mechanisms. 
On page 987, Boccara and colleagues report that grid cells are not unique to the MEC, where 
they were first found, but are also abundant in the pre- and parasubiculum.

Boccara and colleagues recorded from neurons throughout the presubiculum, 
 parasubiculum and MEC of rats during food-motivated running in an open environment. 
They found grid cells in all three of these areas, interspersed with head-direction cells 
and border cells (another recently reported cell class that encodes the boundaries of a 
local environment). The relative proportions of each of these cell classes were comparable 
across presubiculum, parasubiculum and the deep layers of MEC. However, the rotational 
symmetry of the grid pattern and the theta modulation of presubiculum neurons were 
significantly weaker than those in MEC.

The pre- and parasubiculum project strongly to MEC, raising the possibility that they may be the sources of grid-cell properties in 
MEC neurons. However, it is also possible that grid properties are generated locally in each of these regions. Although the existence 
of grid cells in multiple areas does not definitively identify the mechanism for generating these unique response properties, it further 
specifies the neural network that supports the mapping of allocentric space. Hannah Bayer




