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Bayesian inference of form and shape
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Abstract: The ability to visually perceive two-dimensional (2D) form and three-dimensional (3D) shape is
one of our most fundamental faculties. This ability relies on considerable prior knowledge about the way
edge elements in an image are likely to be connected together into a contour as well as the way these 2D
contours relate to 3D shapes. The interaction of prior knowledge with image information is well modeled
within a Bayesian framework. We review here the experimental evidence of shape perception seen as a
Bayesian inference problem.
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Introduction

What are shapes good for? Imagine you are inter-
ested in identifying a tree in your local park. Nei-
ther its size nor its color is a reliable cue for its
name because the tree’s size is dependent on its age
and its color on the current season. In contrast, a
very robust cue is the shape of the tree, be it py-
ramidal, columnar, V-shaped, round, or oval.
Thus for example, a pin oak will be easily distin-
guished from a white oak because the former is
pyramidal and the latter is round in shape. Not
only is the global shape important, but the local
shapes also carry critical information. To pursue
our example, the pin oak has leaves that contain
lobes with bristle-tipped teeth whereas the leaves
of the white oak have rounded lobes.

In addition to the difference in scale, the whole
tree and the individual leaves also differ in another
fundamental way. The tree is described as a 3D
shape whereas the leaves are 2D. While the dis-
tinction between 2D and 3D shapes is clear in the
world, it is often much more subtle for the visual
system. Figure 1 illustrates how a simple line
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drawing can appear 3D. Interestingly, once the 3D
percept arises, it is difficult to simultaneously hold
a planar interpretation.

In this chapter, we discuss how 2D and 3D ob-
ject shape can be inferred from an image. It is well
known that a single image is consistent with an
infinite number of scenes and yet our perception
does not reflect these ambiguities. Therefore, it
seems that additional information is used to di-
sambiguate the image. This extra information has
Fig. 1. Distinction between 2D and 3D shapes. (a) Three ver-

tices connected by straight lines produce the impression of a flat

triangle. (b) In contrast, when those three vertices are connected

by curved lines, a curved 3D surface can be perceived.
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been variously called a Gestalt principle, a rule, a
law, or a property. In contemporary Bayesian
models, this extra information is called prior
knowledge. We start this chapter with a brief re-
minder of the way the Bayesian framework can be
used in visual perception, and then describe how
this framework has been used to understand con-
tour groupings. We then review some studies on
2D and 3D shape from contours that can be cast
within this Bayesian framework.
Basic Bayes

The Bayesian framework has the merit to make a
clear distinction between the information available
at the level of the receptors and the information
specific to the organism. The former is called the
likelihood and the latter the prior knowledge. Pri-
ors are often seen as supplementary information
brought in to disambiguate sensory information.

Imagine that you are interested in inferring the
shape of a closed contour from an image such as
the outline of a sculpture from Constantin Bran-
cusi (Fig. 2). The sculpture is egg-shaped and
sliced by a plane on its left side thus forming an
elliptical section. The section is discontinuous in
the image because of the particular illumination
conditions when the image was taken but the el-
liptical contour does exist on the sculpture. How
can we infer the closed contour in the world given
Fig. 2. Contour image of the sculpture ‘‘The Newborn’’ by

Constantin Brancusi (1915). The original sculpture can be seen

at the Philadelphia Museum of Art.
the broken contour in the image? We come back to
this question in the next section; suffice to say at
this stage that the image impinging on our retinas
should be complemented by additional informa-
tion if we want to conclude that the object does
contain an elliptical cut.

The Bayesian framework offers the optimal way
to combine multiple sources of information. The
likelihood is combined with the prior knowledge
thanks to Bayes’ theorem, thus producing a pos-
terior distribution. The posterior represents the rel-
ative probability of all possible interpretations of
the stimulus, taking into account all the informa-
tion available. When one is interested in the choice
of the organism for one particular interpretation,
we also need to take into account a decision rule
that is applied on the posterior distribution (Fig. 3).
More details about the Bayesian approach to visual
perception can be found in Mamassian et al. (2002)
and Kersten et al. (2004).
Bayesian models of contour grouping

Let us come back to our example of the broken
elliptical contour in the picture of Brancusi’s
sculpture. If we want to infer the closed contour,
we need some prior knowledge about contours.
This extra knowledge is likely to be similar to what
Gestalt psychologists referred to as the principle of
good continuation: two nearby line segments in an
image can be thought to belong to the same con-
tour in the world if there is a smooth curve of
minimal curvature that joins them.

Gestalt principles have often been criticized for
being qualitative descriptions of phenomena rather
than proper explanations. Recent work in exper-
imental psychology has however allowed us to
quantify these principles. For instance, Kubovy
and Wagemans (1995) have quantified the princi-
ple of proximity with the elegant use of dot lattice
stimuli. This kind of experimental approach will
allow us to measure the relative strength of Gestalt
principles and thus to make quantitative predic-
tions on how these principles can act as prior
knowledge in the interpretation of contour shape.

If human observers use a prior assumption that
contours are smooth, then we should be able to
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Fig. 3. Flowchart of the Bayesian framework. Reprinted from Mamassian et al. (2002), with permission from MIT Press.
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predict when a series of dots are perceived as a
single contour or as two contours connected at a
corner. Feldman (2001) measured the probability
to perceive one smooth contour versus a corner in
a variety of conditions where one dot was more or
less aligned with the dots on either side (see also
Warren et al., 2002). He could account for the
relative probability to perceive a corner thanks to
prior probabilities on the angle between successive
dots along a smooth contour.

The prior in Feldman’s study had a general
shape (it favored straight contours) and had a de-
gree of freedom adjusted to the data (the belief that
most contours are straight). Other studies have at-
tempted to extract the prior probabilities from the
statistics of natural scenes. Two groups of research-
ers have independently found that scenes in our
environment do indeed contain a predominance of
straight contours. Geisler et al. (2001) extracted the
edges of 20 natural scenes and measured how
nearby edges varied in orientation. They found a
prevalence not only of parallel contours, but also of
co-circular contours (edges that would fall on a
circle). This latter property is a physical property
that could be at the origin of the Gestalt principle
of good continuation and the existence of associ-
ation fields in the human visual cortex (Field et al.,
1993). From their statistics, Geisler et al. (2001)
extracted a likelihood ratio that was a unit-free
estimate that two edges belonged to the same con-
tour and found that this measure was a good de-
scriptor of humans’ ability to detect a contour in
noise. In a similar vein, Elder and Goldberg (2002)
extracted the edges of nine natural scenes and
measured statistics on proximity, good continuation
and luminance similarity. They found that proxim-
ity was by far the most reliable cue to group
elements along a contour and that human observers
were in good agreement with a model based on the
proximity cue. Finally, one should also note the
effort of Howe and Purves (2005) to relate the sta-
tistics of oriented edges to contours in the 3D world
instead of just the 2D retinal image. They also
found a predominance of aligned contours in their
analysis.
From contours to 2D shape

We have seen in the previous section how a frag-
mented contour could be virtually reconnected
into a continuous contour. Once the contour has
been revealed, its shape can be inferred. Here
again, at the level of the 2D shape of the contour,
the Bayesian framework has proved useful. One
elegant demonstration of the role of prior knowl-
edge on shape perception is the work of Liu et al.
(1999) on amodal completion. When the contour
of an object is occluded by another object, the
missing part of the contour can be interpolated via
a process called amodal completion (Kellman and
Shipley, 1991). For instance in Fig. 4, the upper
parts of two objects are perceptually completed
behind the occluder and linked to their respective
lower parts. Liu et al. (1999) placed the occluder
either in front or behind the object parts thanks to
some binocular disparities and found that convex
objects were completed more easily than concave
ones. They reached this conclusion by placing the
upper and lower parts at different depths and
found higher depth discrimination thresholds
when the object underwent a convex completion.

As we discussed in the introduction, there are
a few objects in the world, like leaves, that are



Fig. 4. Convex and concave amodal completion. Reprinted from Liu et al. (1999), with permission from Elsevier.

Fig. 5. Attneave’s cat. Reproduced from Attneave (1954), with
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basically 2D. There are also quasi-objects that have
a shape and that are 2D. The most common ex-
ample is probably the shadow cast by an object on
a remote surface. Interestingly, we are very tolerant
of the relationship between the shape of the casting
object and the shape of the cast shadow, so
much so that we seem insensitive to impossible
shadows (Mamassian, 2004). Other 2D quasi-
objects are holes in a surface (Casati and Varzi,
1994; Bertamini & Croucher, 2003). The extent to
which the shapes of cast shadows and holes are
processed the same way as other physical objects is
still an empirical question.
permission.
From contours to 3D shape

Contours in an image are not only informative
about the outline of an object, but also about the
3D shape of the object. Perhaps, the most cele-
brated demonstration of the 3D shape informa-
tion available from contours is Attneave’s cat
shown in Fig. 5 (Attneave, 1954). Attneave argued
that most of the information along a contour was
concentrated in parts of high curvature. This ar-
gument has since received considerable support
from both computational and psychophysical
studies (Norman et al., 2001; Feldman and Singh,
2005). However, proving that information is con-
centrated at points of high curvature does not
prove that the rest of the contour is uninformative.
Koenderink (1984) showed that for a smooth sur-
face, there is a one-to-one relationship between the
sign of curvature of the occluding contour and the
sign of curvature of the surface. More specifically,
a convex contour is the signature of a convex sur-
face patch, and a concave contour indicates a hy-
perbolic (saddle-shaped) surface patch. Moreover,
the curvature magnitude of the object can be in-
ferred from the occluding contour when the ob-
server is active (Mamassian and Bülthoff, 1996).
Once the shape of the occluding contour is in-
ferred, the 3D shape can be extrapolated thanks to
a surface filling-in mechanism (Tse, 2002).

There are also other sources of information
about 3D shape than those present on the occlud-
ing contour. For instance, parallel structure in
a solid (like in marble) will create stripes on the
surface of the object and the deformation of
the resulting texture will be informative about the
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shape of the surface (Li and Zaidi, 2004). Lines
that appear painted on the surface on an
object tend to be perceived as geodesics (contours
of minimum curvature) and are therefore also
informative about the 3D shape of the object
(Knill, 1992). In addition, these contours tend
to be interpreted in such a way that the surface
that supports them is seen from above (rather
than from below), thereby constraining further the
3D shape of the object (Mamassian and Landy,
1998).

Other contours are also informative about the
3D shape of the surface on which these contours
appear to be painted. For instance, alternating
dark and bright parallel contours tend to be per-
ceived as shaded bevelled patterns on the surface
(Mamassian and Goutcher, 2001). These contours
are informative about the 3D shape of the surface
only if you know the illumination position, namely
above the observer. In summary, contours are in-
formative about 3D shape provided a number of
assumptions about the illumination position, the
viewer position, or the alignment of the surface
contours with geometric properties of the object.
Without these assumptions, the contours are am-
biguous about the 3D shape of the object. The fact
that human observers are able to consistently per-
ceive the same 3D shape from these images is con-
sistent with a mechanism that integrates image
information with prior knowledge. Bayesian mod-
els are precisely models of this type.
Extraction of basic

Grouping of features i

Interpretation of 2D
shape from contours

Interpretation
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occluding con

Fig. 6. A schematic diagram of the perceptio
Discussion

The state-of-the-art we have presented in this
chapter on shape perception can be schematized
by the diagram in Fig. 6. Once basic features such
as oriented edges are extracted from an image,
they can be grouped together to form continuous
contours. These contours can then be used to infer
the shape of an object in various ways. First, if the
object is 2D, the shape of the contour will simply
be related to the shape of the object. Second, if the
contour is identified as the contour of the object
against the background, there are mechanisms that
will allow us to fill-in the surface from this oc-
cluding contour. Finally, if a contour is near other
similar contours, these can be grouped together
into a texture pattern, and a 3D shape can then be
inferred from this texture. Even though we have
drawn uni-directional arrows in this figure, it is
clear that feedback mechanisms do influence early
representations (Murray et al., 2004).

One critical aspect of this way to understand
shape perception is that prior knowledge is
brought in at all stages of visual processing. For
instance, features are grouped into contours fol-
lowing preferences that contours are straight.
Contours are grouped into texture patterns fol-
lowing some principles of similarity. 3D shape is
inferred from texture following homogeneity as-
sumptions on the texture. Each stage can be seen
as a Bayesian inference process where information
 features

nto contours

 of
m

tours

Grouping of 2D contours
into texture patterns

Interpretation of 3D
shape from texture

n of 2D and 3D shape from an image.
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from the earlier stage is combined with the rele-
vant prior knowledge for the current stage. While
there are a growing number of studies on the in-
dividual stages, little work has been done to inte-
grate these stages into a hierarchical Bayesian
model of shape perception.

We conclude this chapter with some outstanding
questions. First, what are the Bayesian aspects that
are equivalent to generic principles such as ‘‘sim-
plicity’’ or ‘‘smoothness’’? We have argued that
such principles would intuitively translate as priors
in a Bayesian model, but the precise nature of
these priors and their origin remains a serious em-
pirical question. Theoretical works showing the
equivalence between simplicity and some statistical
quantity are very important to explore this ques-
tion (Chater, 1996).

A second issue is whether priors necessarily re-
flect regularities of the natural world. Some works
within the Bayesian framework do indeed take this
assumption as a premise, but some believe that this
is not a requirement. For instance, we found that
human observers behaved as if their assumption
on the light source position was biased to the left
(Mamassian and Goutcher, 2001), an assumption
that is difficult to relate to statistics of the natural
world. Future work should investigate the origin
of such priors.

Finally, we may wonder what are the neural
bases of Bayesian processing? The empirical de-
termination of prior assumptions used by human
observers when they perceive shape opens the door
to fascinating investigations on the way these pri-
ors are implemented.
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