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Shadows provide a strong source of information about the shapes of surfaces. We analyze the local geometric
structure of shadow contours on piecewise smooth surfaces. Particular attention is paid to intrinsic shadows
on a surface: that is, shadows created on a surface by the surface’s own shape and placement relative to a
light source. Intrinsic shadow contours provide useful information about the direction of the light source and
the qualitative shape of the underlying surface. We analyze the invariants relating surface shape and light-
source direction to the shapes and singularities of intrinsic shadow contours. The results suggest that intrin-
sic shadows can be used to directly infer illuminant tilt, qualitative global surface structure, and, at intersec-
tions with surface creases, the concavity/convexity of a surface. We show that the results obtained for point
sources of light generalize in a straightforward way to extended light sources, under the assumption that light
sources are convex. © 1997 Optical Society of America [S0740-3232(97)02212-6]

1. INTRODUCTION

Artists have long understood the importance of shadows
for generating an impression of three-dimensionality in
paintings.! Figure 1 shows two examples of how shad-
ows can be used to depict surface shape or spatial dis-
placement in scenes. Although both images are clearly
two-dimensional depictions, they nevertheless induce
strong percepts of three-dimensional structure. Figure
1(a) is an example of intrinsic shadows: shadows formed
by an object on itself. Intrinsic shadows, with which we
are primarily concerned in this paper, provide perceptu-
ally salient information about the shapes of objects and
the direction of illumination in a scene.? Figure 1(b) is
an example of extrinsic shadows: shadows cast on one
object by another. Extrinsic shadows provide particu-
larly salient cues to the relative positions and orienta-
tions of objects.>* The information provided by extrinsic
shadow contours about surface geometry has been exten-
sively analyzed by Shafer and Kanade.?

One view of intrinsic shadows is that they provide a
coarse description of the shading pattern on a surface.
The information provided by shadows, however, is quali-
tatively different from that provided by shading, in that
the former is fundamentally contained in the geometric
relations between the curves formed by shadow bound-
aries and surface and lighting geometry. Furthermore,
shadow contours in natural viewing conditions are not
simply a special case of isophotes. Isophotes (curves of
constant luminance in an image) are determined by mul-
tiple factors, including internal reflections on a surface
and between surfaces. To the extent that one can model
the geometric relations between isophotes and surface ge-
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ometry for simplified, local reflectance models,® these re-
lations are not likely to generalize to real scenes. Shad-
ows, on the other hand, contain multiple cues for
segmentation and thus, at least in theory, may be accu-
rately measured in natural images. As a first step in
studying the perceptual interpretation of intrinsic shad-
ows, therefore, we have undertaken a theoretical analysis
of their information content. In this paper we present
the results of this analysis and suggest a number of im-
plications they could have for human visual perception.

A. Approach

One approach to studying the information content of
shadows would be to formulate a “shape-from-shadows”
problem within the classical inverse-optics framework so
often applied to problems in computer vision.” ' In this
context, points along intrinsic shadow boundaries provide
constraints on surface shape that can be used as bound-
ary conditions for surface interpolation within shadow re-
gions, much as occluding contours can be used to con-
strain shape from shading. The main constraints
provided by shadow boundaries are that (1) the surface
normals at points along an attached shadow contour are
perpendicular to the lighting direction and (2) attached
and cast shadow points that lie on the same illuminant
ray in the image lie on the same illuminant ray in three
dimensions (they have the same height in a light-source-
centered coordinate system).

Although it is potentially useful in shape reconstruc-
tion algorithms, the approach described above does not
make explicit the nature of the information provided by
intrinsic shadows about surface shape (as well as about

© 1997 Optical Society of America



Knill et al.

(b)

Fig. 1. Examples that clearly demonstrate the role of shadows
for the perception of three-dimensional surface geometry. (a)
Artists commonly use intrinsic shadows in pencil and ink
sketches to induce a sense of three-dimensional surface shape—
much more surface structure is evident in the left image than in
the right, in which the shadows have been removed. (b) The
shadow cast by one object on another provides perceptually sa-
lient information about the relative placement and orientations
of the objects in three dimensions. The only difference between
the two images in (b) is the orientation of the shadow cast by the
pole, yet the pole in the right image appears more upright rela-
tive to the background surface than does the pole in the left im-
age.

scene illumination). Our intuition tells us that it is the
shapes of intrinsic shadow boundaries that directly pro-
vide information about surface shape and illumination.
In this paper, therefore, we take a direct approach to
specifying the information content of intrinsic shadows by
analyzing the geometric constraints on the shapes of in-
trinsic shadows and the relationship between the behav-
ior of shadow contours and surface shape and illumina-
tion. This is akin to the approach taken by Shafer and
Kanade® to understanding the geometry of extrinsic
shadow contours, though the requisite mathematics is
more in the spirit of Koenderink’s differential geometric
approach to contour interpretation. The goals of the pa-
per are twofold. First, we hope to provide a complete
characterization of the local geometric and global topo-
logical behavior of intrinsic shadow contours. An under-
standing of this behavior is, we feel, a prerequisite for
studying many problems involving intrinsic shadows.
For a theoretical discourse of this type to be useful to the
visual scientist, however, we must at least point to its po-
tential implications for human vision; therefore a second
goal of the paper is to outline these implications and to
suggest possible predictions for human perception.

B. Outline
We will analyze five aspects of intrinsic shadow contour
geometry:
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e The global properties of intrinsic shadow contours
and their relationship with surface shape, including the
evolution of intrinsic shadows as an object is moved rela-
tive to a light source (creation, destruction, merging, and
splitting of shadows).

e The relationship between the local shape of intrin-
sic shadow contours and surface shape and illuminant di-
rection.

¢ The types and natures of singularities in intrinsic
shadow contours and their relationship to surface struc-
ture.

e The behavior of intrinsic shadow contours at inter-
sections with surface creases.

e The behavior of intrinsic shadow contours at inter-
sections with smooth occluding contours.

Since we are targeting both computational and psycho-
physical audiences, the theoretical discussion will be at
times technical and at times informal, and we will include
both rigorous mathematical proofs and qualitative sum-
maries of results. The paper is organized so that a
reader who does not wish to wade through the details of
the definitions and proofs can do so without missing the
core of the discussion. We will explicitly indicate sec-
tions containing technical proofs that can be skipped by
the more casual reader.

In Section 2 we provide a qualitative characterization
of how intrinsic shadows are formed on smooth surfaces,
for both point and extended sources of light. In Section 3
we describe the geometry of intrinsic shadows on smooth
surfaces illuminated by a point source of light. The
analysis in this section is, for the most part, a straightfor-
ward extrapolation of earlier analyses of smooth occlud-
ing contours'!? and of singularities in surface shading
patterns®!3; therefore we derive most of our results by
analogy with these earlier analyses and do not recon-
struct the corresponding mathematical derivations. In
Section 4 we extend the analysis to smooth surfaces illu-
minated by extended light sources. Since this section re-
quires a different mathematical analysis from what has
been presented before, it will be substantially more tech-
nical than previous sections. We will, however, summa-
rize the major results at the end of the section. Section 5
will present an analysis of the behavior of shadow con-
tours at or near creases of piecewise smooth surfaces. In
Section 6 we will discuss the implications of the theoreti-
cal results for perception and suggest possible ways in
which intrinsic shadow information might be used by the
visual system for the perception of surface shape, illumi-
nation direction, and contour labeling.

2. SHADOW FORMATION

We begin our discussion with a qualitative description of
how intrinsic shadows are created on smooth objects (Fig.
2). Two types of shadow regions may be contained in an
intrinsic shadow: attached and cast. Attached shadow
regions contain points on a surface that face away from a
light source. If the light source is extended in space (e.g.,
a light bulb), the constraint must hold for the entire sheaf
of rays connecting the point on the surface to points on
the surface of the light source. A cast shadow region con-
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tains points that face a light source but are occluded from
it by a distal part of the surface. Cast shadows on a sur-
face illuminated by an extended light source have penum-
bra; that is, fuzzy boundaries formed by the gradual tran-
sition between fully illuminated regions of a surface and
fully shadowed regions. For purposes of definition, we do
not consider penumbra to be part of cast shadow regions;
that is, we define cast shadows to contain surface points
that are occluded from all points on a light source. The
boundaries of cast shadows, then, are the interior edges of
penumbra.

For the sake of analysis and discussion, we will distin-
guish between visible and invisible shadow boundaries.
As we have defined them, shadow regions may be nested
within one another or may abut one another along some
segment of their boundaries. A large hill, for example,
may cast a shadow over small hills, yet by our definition
of shadow regions, the smaller hill might still have an at-
tached shadow on it, though that shadow would be invis-
ible. The boundaries of the small hill’s attached shadow
would then be invisible (regardless of viewpoint), as it
would be hidden by the larger shadow. Cast shadow re-
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gions within intrinsic shadows are “created” by attached
shadow regions on a surface (Fig. 2) and always abut at-
tached shadow regions. We will refer to the attached
shadow in such a pair as the parent of the cast shadow.
Not all intrinsic shadows have cast shadow regions, as il-
lustrated by the dark side of a ball, whose shadow is en-
tirely attached; thus intrinsic shadows on surfaces are ei-
ther entirely attached or contain both attached and cast
shadow regions, but they are never entirely cast.

We will define shadow regions by their boundary
curves and characterize the shadow formation process by
the relationship between light sources and these bound-
ary curves on surfaces. Figure 2 shows the geometric
constructions that allow one to trace out the shadow
boundaries on surfaces. For a light source at infinity, the
light rays are parallel and attached shadow boundaries
are formed anywhere that a light ray is tangent to a sur-
face; that is, where the surface normal is perpendicular to
the direction of illumination. The sheaf of rays passing
through points on an attached shadow boundary form an
imaginary surface, which, using the terminology of Shafer
and Kanade,? we will henceforward refer to as the illumi-

§ cast shadow

VA attached shadow

Q cast shadow

VA attached shadow

§ cast shadow

Fig. 2. Regions of a surface facing away from a light source are said to be in attached shadow. For point sources [(a) and (b)], the

boundaries of attached shadows are formed where light rays from the source are cotangent to the surface.
attached shadow boundaries are formed at points on a surface that share a tangent plane with points on the light source.

For extended sources [(c)],
The rays

connecting attached shadow boundaries to points on the light source that share a common tangent plane form an envelope over the
surface and the light source that is cotangent to both. When a surface region in attached shadow occludes part of the surface from the
light source, a cast shadow is formed that is contiguous with the attached shadow.
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nation surface. For a point source at infinity, the illumi-
nation surface is cylindrical. For a point source a finite
distance from a surface [as in Fig. 2(b)], the light rays
may be visualized as radiating from the source, and, as
before, attached shadow boundaries are formed where
any of these rays lie in the tangent plane of the surface.
In this situation imaginary illumination surfaces are
conical, being formed by the sheafs of rays connecting the
source to points on attached shadow boundaries. The
first points of intersection (away from the attached
shadow boundary) between the illumination surface and
the physical surface form the boundary of an attached
shadow’s child cast shadow.

For extended light sources, one can intuitively see that
a surface point will be visible to a point on the surface of
the light source if the two surfaces face each other at that
point [Fig. 2(c)]. As we have defined it, a surface point is
in an attached shadow if it faces away from all points on
an extended light source. The boundary of such a region
is formed at surface points where one can draw a ray be-
tween the surface point and a point on the light source
that is in the local tangent planes of both the surface and
the light source. The imaginary illumination surface
passing through an attached shadow boundary is there-
fore a surface that is simultaneously tangent to both the
illuminated surface and the light source (Fig. 3).

In general, objects that are bounded in space (having
compact surfaces) have at least one intrinsic shadow
whose boundary is entirely attached. Such a shadow will
migrate over a surface as the surface is moved relative to
a light source, but it will never be destroyed. We there-
fore refer to this shadow as an object’s basic shadow.
Other shadows on an object may be created or destroyed
as the object is moved relative to a light source. To pic-
ture this, imagine taking a series of aerial photographs of
a desert over the course of a day. At night, the entire
desert is in shadow, but as the Earth rotates and the Sun
crosses over the sky from dawn to dusk, the shadow
breaks into successively more and smaller shadows on the
dunes. As noon approaches, the shadows shift and many
disappear. More new ones appear as the afternoon
progresses and eventually merge back into one at night-
fall. Similar events occur on a smaller scale as a surface
rotates relative to a light source.

The singular events in the dynamic evolution of shad-
ows come in two basic types: the creation or destruction
of new shadow regions and the merging or splitting of
shadows. To understand the nature of these events and
where they occur on surfaces, we draw on an analogy be-
tween shadow boundaries and smooth occluding contours.
For a point source of light, intrinsic shadow boundaries
are formed at the loci of points on a surface that project to
occluding contours from the viewpoint of the light source.
We can therefore generalize results obtained by Koen-
derink and van Doorn!! and Koenderink!? on the singular
events in the evolution of smooth occluding contours to
similar events in the evolution of shadow boundaries.
The results also hold for extended light sources, which
can be treated as compact collections of point sources.

e Shadow creation/destruction (row 1 of Fig. 4). New
shadows are always created at parabolic points of a sur-
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face. Similarly, shadows are destroyed at parabolic
points. When a new shadow is created at a parabolic
point, the shadow spreads to either side of the parabolic
line; thus it contains both elliptic and hyperbolic regions
of a surface. It also necessarily has both attached and
cast shadow regions.

Fig. 3. The attached shadow on a toroid has two disjoint bound-
aries: one formed by the exterior of the donut, the other formed
by the interior. The illumination surface associated with the in-
terior boundary has the interesting property that it is self-
intersecting. This is always true for that part of an illumination
surface associated with an attached shadow boundary in a hyper-
bolic surface patch.

Shadow contours
(from view of observer)

Self-occluding contours
(from view of light source)

before after before after

©

shadow creation

O

sharp shadow merge

72
/4 attached shadow

Iﬂ"ﬂmnﬂﬂ cast shadow

Fig. 4. The evolutionary events in shadow boundaries that oc-
cur as a light source is moved relative to a surface are qualita-
tively similar to events in the evolution of occluding contours
that occur with motion of an observer relative to a surface. The
first row of the figure shows an event corresponding, in this case,
to the creation of a shadow at a bump on a surface, although in
general it might occur at a dimple. The second row shows the
splitting of a shadow into two, in this case, corresponding to two
bumps on a surface. The last row shows an example of two in-
trinsic shadows merging as a result of occlusion of one attached
shadow by another.
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e Shadow merge/split (rows 2 and 3 of Fig. 4). There
are two ways that shadows can merge together (or split
apart) on a surface. From the point of view of the light
source, these correspond to merging two smooth occluding
contours into one smooth occluding contour (Fig. 4, row 2)
or forming a T junction between smooth occluding con-
tours (Fig. 4, row 3). The first type of merge occurs at
parabolic points on surfaces. It results in the merging of
both attached shadow boundaries and their child cast
shadow boundaries. The intrinsic shadow boundaries re-
sulting from such a merge are smooth. The second type
of merge creates a junction between unrelated attached
and cast shadow boundaries and results in a concave L
junction in the visible boundary, one arm of which is at-
tached, the other arm of which is cast.

3. SHADOWS ON SMOOTH SURFACES:
POINT LIGHT SOURCES

Shadows formed on smooth surfaces by point sources of
light provide the easiest case for analysis, since most of
the results follow naturally from previous analyses of
smooth occluding contours.!*!2  Attached shadow bound-
aries are curves on surfaces that would appear as self-
occlusion boundaries from the viewpoint of the light
source. Figure 5 shows the geometry relating the two
types of boundaries. In formal terms, we say that at-
tached boundaries are the preimages on a surface of self-
occluding contours from the point of view of a light source.
These curves have a number of interesting properties:

¢ They are everywhere smooth.

e The surface is convex in the direction of the light
source over the visible extent of an attached shadow
boundary. Visible attached shadow boundaries therefore
traverse regions of a surface which are either hyperbolic,
parabolic, or convex elliptic, but not concave elliptic.

¢ At points where they change from being visible to
being invisible (end points of occluding contours), they are
tangent to asymptotic directions on a surface (point b in
Fig. 5) and to the light-source direction; thus surfaces are
hyperbolic at these points.

The point at which an attached shadow boundary be-
comes invisible is a junction between the attached shadow
boundary and a cast shadow boundary. We refer to such
a junction as a parent—child junction, because it connects
the boundary of a parent attached shadow to the bound-

VA attached shadow
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@ cast shadow
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ary of its child cast shadow (as defined in Section 2). The
other type of junction that can occur between attached
and cast shadow boundaries corresponds to what would
appear to the light source as a T junction in an occluding
contour. Such a junction maps to two concave L junc-
tions between unrelated cast and attached shadow bound-
aries (point a in Fig. 6).

What information, then, is provided by the shadow con-
tours that result from projecting intrinsic shadow bound-
aries into an image? We answer this question individu-
ally for each of the qualitatively different points along
such a contour.

A. Regular Points of Attached Shadow Contours (Point
a in Fig. 5)

As mentioned above, a surface is convex in the direction of
the light source at visible points of an attached shadow
[excepting the end points, where attached shadow con-
tours join with their children cast shadow contours, see
Subsection 3.B]. Although this is useful information in
its own right, the shape of attached shadow contours po-
tentially provides more quantitative information about
surface shape. We might hope to extract information
about surface shape similar to that provided by smooth
occluding contours, for example, in the relationship be-
tween contour curvature and surface curvature (e.g., the
sign of curvature of an occluding contour indicates
whether a surface is convex elliptic or hyperbolic). Un-
fortunately, since we view shadow boundaries from arbi-
trary viewpoints, no such simple invariants hold at regu-
lar points on attached shadow contours. In Appendix A
we derive the quantitative relationships between at-
tached shadow contour shape and surface shape. The lo-
cal orientation of a shadow contour is related to the local
curvature and orientation of the underlying surface. The
curvature is determined by these plus the local third-
order structure of a surface (derivatives of curvature).
Although local attached shadow contour shape seems to
be a weak form of static information about local shape,
one could potentially use controlled viewer motion to ex-
tract reliable information from dynamic changes in con-
tour orientation and curvature (much as this strategy has
been applied to occluding contours!).

B. Parent—Child Intersection between Attached and
Cast Shadow Contours (Point b in Fig. 5)

The parent—child junction between attached and cast
shadows is a particularly interesting point on an intrinsic

Scene viewed
from the light source

Fig. 5. We can distinguish several qualitatively distinct points on an intrinsic shadow contour (see text for discussion): a, regular
points along attached shadow contours; b, points of intersection between cast-shadow contours and their associated attached-shadow
contours; c, points of intersection between attached shadow contours and occluding contours; and d, regular points of cast shadow con-

tours.
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Scene viewed
from the light source

Fig. 6. When the light source’s view of a surface contains a T
junction in the occluding contour, an L junction is formed be-
tween one hill’s cast shadow and another’s attached shadow.
Similarly, an L junction is formed at the junction of the two hills’
cast shadows. All of these singular points lie along the same ray
from the light source.

shadow contour, because at this point we know two
things: (1) that the asymptotic direction of the surface is
in the direction of the shadow contour and (2) that the
light source tilt, i.e., its direction in the image plane, is in
the direction of the shadow contour (leaving the slant of
the light source away from the line of sight of a viewer un-
defined). Suppose that the visual system can detect junc-
tions between attached and cast shadows, for example, by
using luminance information across the contours for con-
tour labeling.'® It would clearly be useful to tell if it is a
parent—child intersection or an intersection between un-
related shadow contours. A study of the behavior of in-
trinsic shadow boundaries at parent—child intersections
reveals an interesting fact (and one which we have not
found analogs to anywhere in the literature on occluding
contours): the boundary is smooth at such an intersec-
tion, in the sense that the tangent directions of a parent
attached shadow boundary and its child cast shadow
boundary are the same at the intersection (as drawn in
Fig. 5; see Appendix B for a proof of this result). Generi-
cally, unrelated attached and cast shadows will form an L
at their intersection; thus the geometric behavior of the
contours at an intersection indicates the nature of the in-
tersection. We should also point out that knowledge of
the light-source tilt (for a point source at infinity) would
allow one to detect parent—child intersections by finding
points on an intrinsic shadow contour that are tangent to
that direction.

C. Intersections between Attached Shadow Contours
and Smooth Occluding Contours (Points ¢ and d

in Fig. 5)

Two types of intersection between attached shadow con-
tours and occluding contours may occur, corresponding to
whether the surface on which the visible attached shadow
boundary sits belongs to the occluding contour (point c).
It is only the former point of intersection that is of special
interest. At such an intersection, shadow contours are
generically cotangent to smooth occluding contours (like
other contours that project from markings on a surface).®
Unlike at regular points along an attached shadow con-
tour, the curvature of the contour is determined entirely
by the orientation and curvature of the surface at the in-
tersection point and not by the derivatives of curvature.
Since the surface orientation is given by the normal to the
occluding contour, the curvatures of the shadow contour
and the occluding contour together provide two con-
straints on the three unknowns needed to specify local
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surface curvature at the point (see Appendix A). Al-
though this point is theoretically true, we suspect that ob-
taining reliable measures of these curvatures would be
difficult, making the information provided rather weak.
We therefore do not dwell on this. On the other hand,
the point of intersection does provide very reliable infor-
mation about light-source direction. For a point source
at infinity, it gives the tilt of the light source in the image
plane. For a point source a finite distance from the sur-
face, a ray drawn along the tangent direction passes
through the projection of the light source into the image.
Localization of two points of intersection between at-
tached shadows and occluding contours thus determines
the projected position of the light source in the image,
which would be given by the intersection of rays drawn
along the tangents of both points.

A corollary to the above result is that the tangent di-
rections of attached shadow contours at intersections
with occluding contours and with child cast shadow con-
tours are parallel, for point sources at infinity, or inter-
sect at a common point, for finite point sources. This pro-
vides a direct way to detect child—parent shadow contour
intersections without relying on the mediating variable of
light-source direction.

D. Regular Points on Cast Shadow Contours (Point d

in Fig. 5)

The local shape of a cast shadow contour is determined by
a large number of factors. These include the direction of
light source, the local shape and orientation of a surface,
and the shape and orientation of the surface along the at-
tached shadow boundary from which the cast shadow was
formed (see Ref. 5 for a full analysis). The local shape of
the cast shadow contour component of an intrinsic
shadow contour would therefore seem to be particularly
uninformative about surface shape. As it turns out, how-
ever, we can derive a useful invariant relating the behav-
ior of cast shadow contours at intersections with surface
creases to both light-source direction and surface shape.
We leave this to Section 5, which concerns the behavior of
shadows on surfaces with creases.

4. SHADOWS ON SMOOTH SURFACES
(EXTENDED LIGHT SOURCES)

Analyses of shading information and models of shape
from shading generally rely on the assumption that the
directional component of illumination comes from a point
light source.'”® Many environments in which humans
operate violate this assumption, containing as they do ex-
tended light sources. It is therefore important to ask
how analyses and models using shading information gen-
eralize to extended light sources, if at all. For our pur-
poses, we need to ask whether the behavior of shadow
contours changes substantially when the illuminant is
changed from a point source to an extended source. The
answer is clearly no for light sources that are extremely
small relative to the size of an object, in which case the
point-source assumption holds approximately. We are
concerned, however, with cases in which the spatial ex-
tent of light sources (when projected onto a surface) is on
a scale not much smaller than that of the objects. Many
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objects with which humans are concerned—for example,
the Sun—cannot be treated as simple point sources of
light.

The mathematical tools needed to analyze the geom-
etry of intrinsic shadows created by extended light
sources are qualitatively different from those used to de-
rive results for point sources of light (which follow simply
from results on the singularities of projective mappings of
smooth surfaces,'® as applied to occluding contours). The
mathematical tools we will use for our analysis are drawn
from the elementary differential geometry of curves and
surfaces. Because of the novelty of the analysis, we will
describe it in detail in this section. The basic result con-
cerns an abstract geometrical property of attached
shadow boundaries, from which the more concrete conse-
quences described above for point sources derive. The
reader not interested in a detailed geometrical analysis of
extended light sources may skip sections 4.A and 4.B,
which contain the bulk of the mathematics. The end re-
sult is that the general characteristics described for in-
trinsic shadows with point light sources also hold for sim-
ply convex extended light sources (such as a ball or
ellipsoid), with the caveat that light-source direction var-
ies over the extent of a shadow boundary. Some of the
results do not hold for nonsimply convex light sources
(light sources with hyperbolic and possibly concave-
elliptic regions), and these will be pointed out where they
occur.

A. Formal Characterization of Intrinsic Shadow
Boundaries Created by Extended Light Sources

In order to perform our analysis, we need to rigorously de-
fine intrinsic shadow boundaries on surfaces. A first step
toward this end is to define the conditions that hold for
points in shadow. In particular, we are concerned with
points within attached shadows. Let X represent a
smooth surface and A the surface of an extended light
source. A point on the surface,xs € X, is said to be in an
attached shadow if and only if it faces away from all
points on the light source, x, € A, a condition that we
state more formally as the condition

(Vxp € A)(Ny(xy),x4 — X35) < 0; 1)

that is, for each and every point on the surface of the light
source, the angles between the rays from that point to
points within an attached shadow are all in the range
[90°, 270°].

The boundary of an attached shadow on a surface is
clearly a curve. For surfaces with holes, this curve may
be disjoint (i.e., the boundary may consist of two curves,
for example, on the inside and outside of a donut). For
simplicity, we will consider attached shadows that have a
single connected curve for a boundary, though the analy-
sis holds for each of a set of disjoint curves that may con-
stitute an attached boundary on a surface with holes.
Without loss of generality, we will assume this curve to be
parameterized by its arc length normalized by the total
length of the curve. Thus an attached shadow boundary
is a curve on the surface, a : a(¢); 0 < ¢ < 1. Since illu-
minated points on a surface are defined by the condition
that there exist points on a light source for which the sign
of inequality in Eq. (1) is reversed, this curve is defined by
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the condition that at every point on the curve, the surface
normal either points away from or is perpendicular to ev-
ery point on the light source [satisfies Eq. (1)], and is per-
pendicular to at least one such point. That is, « is de-
fined by the condition

(Vt € [0,1)) (Ix, € A) (Ns[a(®)], a(t) —x,) =10
and (Vxy € A) (Nsle(?)], a(t) —x,)=0
(2)

One can easily show that condition 2 holds for points on
the surface that share a tangent plane with the light
source and that have parallel surface normals {Ny[ «(¢)]
= Nj(x,)} (see Fig. 7). We can therefore rewrite (2) as

(Vt € [0,1)) (3x5 € A) (Nsla@®)], a(t) —x,) =0
and Ns[a(t)] = Ny(xy). 3)

The illumination surface connecting an extended light
source to points on an attached shadow boundary is tan-
gent to both the light source and the surface. This sur-
face is necessarily developable (i.e., it can be unfolded,
without stretching or compression, into a plane), a fact
that will prove useful later in the paper.?® Each point on
an attached shadow has a corresponding point on the sur-
face of the light source that matches condition 3. We will
refer to this point as the light source’s image of the corre-
sponding point on the attached shadow boundary. The
light source’s image of an attached shadow boundary is it-
self a curve on the light source, which we will write as
N:A(); 0 <t <1 We will assume \ to be parameter-
ized so that \(¢) is the light source’s image of a(¢). Re-
writing condition 3 in terms of the attached shadow
boundary and its light source image, we obtain

(Ve € [0,1)) (Ns[a(®)], a(t) = \(#) =0

and Ns[a(t)] = NA[NB)]. (4)

A cast shadow boundary is formed by the intersection
of an attached shadow boundary’s associated illumination
surface with the surface being illuminated. By this defi-
nition, cast shadow boundaries are the internal edges of

Fig. 7. Points on a surface, such as p, that face toward at least
some parts of an extended light source, are said to be illumi-
nated. Points on a surface that face away from all points on a
light source are in shadow. The boundary between the two re-
gions is formed where the envelope of the surface and the light
source intersects the surface. The intersection between this en-
velope and the light source forms a curve on the light source
analogous to the attached shadow boundary on the surface. We
refer to this curve in the text as the light source’s image of the
attached shadow boundary.
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penumbra; that is, they demarcate regions on a surface
that receive at least some illumination from a light source
from regions which do not receive any illumination from
the source. For an attached shadow that casts a shadow
on its surface, there exists for each point on the attached
shadow boundary a corresponding point on the cast
shadow boundary that lies along the same ray from the
light source. We will write the collection of points on the
cast shadow boundary, therefore, as a curve, y : y(¢); 0
< t < 1, defined so that y(¢) lies along the same light
ray as a(t).

B. Geometry of Attached Shadow Boundaries for
Extended Light Sources

In this subsection we use the geometrical relations be-
tween attached shadow boundaries and their images on
an extended light source to derive the fundamental geo-
metric properties of attached shadow boundaries. We
will show that they behave qualitatively like attached
shadow boundaries for point sources. In particular, we
will show that such boundaries are everywhere smooth
(their tangents are everywhere well defined) and are
everywhere conjugate to the direction of illumination;
that is, the derivative of the surface normal taken along
the tangent to the shadow boundary at each point is per-
pendicular to the illumination ray at that point. Al-
though the latter property may seem somewhat abstract,
it underlies the constraints relating shadow boundary
shape and surface shape. As an application of the result,
we show that the behavior of intrinsic shadow boundaries
at intersections of parent—child attached and cast shadow
boundaries is the same for extended sources as it is for
point sources. We state the result more formally as a
proposition.

Proposition 1. Let X be a smooth surface illuminated
by a convex light source, A. Assume that 3 contains no
planar points. Let a : a(t); 0 < ¢ < 1 be an attached
shadow boundary on 3 that matches condition (4). As-
suming general position of the light source, « is a smooth
curve; that is, a'(¢) # 0; 0 < ¢ < 1. Furthermore, the
tangent of « is everywhere conjugate to the direction of il-
lumination.

Proof. We will first show that if '(¢) # 0, then a'(¢)
is conjugate to the direction of illumination. We want to
show that for nonzero a'(¢)

(Nile/(8)], L(t)) = 0, (5)

where Ns[a’(¢)] is the derivative of the surface normal
computed in the direction «’'(¢) on the surface.

The direction of illumination at a(¢) is given by L(¢)
= [a(t) — N@®)/Ma(t) — NI, where A(¢) is the illumi-
nant’s image of a(¢), as defined above. By condition (4),
we have

(Ns[a(t)], L(t)) = (Ns[a(t)], a(t) — X(t)) = 0. (6)

Taking derivatives, we obtain
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d
5 Nsla@)], a@) = M@)) = (Ns[a'(D)], a(t) = N(#)

+ (Ns[a(®)], L'(¢)) = 0 (D
(Ngle' ()], a(t) = \(2))
+ (Nsle, (0)], a'(t) = N'(¢)) = 0 (8)
(Nyla'(t)],a(t) — N(t)) + (Ns[a(t)],a'(£))
— (Ns[a(®)], N'(#)) = 0. (9

Noting that Ny[a(f)] = No[A(#)] and that (N,[A\(2)],
N (#)) = 0 (which implies that (N[ a(2)], N'(¢)) = 0), we
obtain finally

(N[a'(2)], L(t)) = 0, (10)

the desired result.

In order to prove the first part of the proposition, that «
is everywhere smooth, we need to show that at each point
a(t), a unique, nonzero vector v exists in the tangent
plane of 3 at a(t) such that (a) (Ng(v), L(¢)) = 0, and (b)
Ni(v) = Nj(w) for some vector, w (possibly 0), in the
tangent plane of A at N\(¢). We then have o'(¢) = v and
N =w.

Condition (a) is immediate under an assumption of gen-
eral light-source position, since for nonplanar surface
points the conjugate direction of any given vector is
unique. This determines the direction of v. It merely
remains to show that a vector, w, may be found such that
condition (b) holds. We consider two cases.

Case 1: a nonparabolic point of 3. Choose the vector
v that matches condition (a) and has unit length. Ng(v)
is a vector in the tangent plane of a(¢). Since A is as-
sumed to be simply convex [the point \(¢) is elliptic], a
vector w exists for which N (w) is equal to any other vec-
tor in the tangent plane of the surface at N\(¢). Since a(¢)
and \(¢) share the same tangent plane, Ny(v) is in the
tangent plane of A at \(¢), and it is clearly possible to de-
fine a vector w for which N (w) = Ng(v).

Case 2: a parabolic point of 3. Assuming a general
position for the lighting, the vector v matching condition
(a) is in the asymptotic direction of the surface and is per-
pendicular to the parabolic line.??’ Thus we have N{(v)
= 0. Since the light source is assumed to be elliptic at
every point, no nonzero vector w exists in the tangent
plane of A for which Nj(w) = 0; therefore, we must
choose w = 0. With this choice, condition (b) is met and
a'(t) is in an asymptotic direction of the surface. Since
w = 0, we have A\'(¢) = 0, and the image of an attached
shadow boundary on a convex light source has a cusp sin-
gularity where the boundary point is parabolic on the sur-
face.

Since cases 1 and 2 include all points on smooth sur-
faces, a is everywhere smooth, proving part 1 of the
proposition. QED.H

One of the important invariants we derived for point
light sources that relates the behavior of intrinsic shad-
ows and surface shape is that parent—child intersections
between attached and cast shadow boundaries occur
where the tangent to the boundary is in an asymptotic di-
rection of a surface (point b in Fig. 5). This type of inter-
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section is distinguished from other attached—cast shadow
intersections by the fact that the visible intrinsic bound-
ary is smooth at the intersection (up to first order), where
other types of intersection form corners. We can use the
result obtained above to show that these invariants hold
for intrinsic shadows formed by extended light sources.

A parent—child intersection between attached and cast
shadow boundaries occurs where an attached shadow
boundary goes from being potentially visible to the light
source to being invisible to the light source, since at this
point the attached shadow boundary curves interior to
the apparent shadow. The potential visibility of an at-
tached shadow boundary to the light source is determined
by the curvature of the surface in the direction of the il-
luminating ray: if the surface is convex in that direction,
the boundary is potentially visible; if it is concave, it is in-
visible. Parent—child intersections between attached
and cast shadow boundaries, therefore, occur at points of
attached shadows at which the normal curvature of the
surface in the direction of the illuminating ray changes
from positive to negative. We show that at these points,
the attached shadow boundary is in an asymptotic direc-
tion of the surface.

Proposition 2. Let 3 be a smooth surface illuminated
by an extended light source, A. Assume that 3 contains
no planar points. Let a: a(f); 0 < ¢ < 1 be an attached
shadow contour on ¥ that matches condition (4), and let
L(¢) be a unit vector in the direction of the illuminating
ray at a. Assuming general position for the light source,
a necessary condition for the surface curvature in the di-
rection of the illuminating ray {«,[L(¢)]} to change sign
at a point «(¢) is that «'(¢) be an asymptotic direction
of 3.

Proof. A necessary condition for the point at which
k,[L(¢)] changes sign is that «,[L(¢)] = 0; that is, L(¢)
must be an asymptotic direction of 3. But where L(#) is
an asymptotic direction of 3, @’(#) is in the same direction
as L(¢), since a'(t) is everywhere conjugate to L(¢) and
an asymptotic direction is self-conjugate. The condition
that L(¢) be an asymptotic direction of 3 is therefore
equivalent to the condition that «’'(¢) be an asymptotic di-
rection. QED.H

C. Summary of Results

For simply convex light sources, the major results found
for point sources generalize to extended sources. For
light sources that are not simply convex, the situation is
not nearly so happy. We have noted above that the im-
age of an attached shadow boundary on an extended light
source may have cusp singularities, precisely at points
whose corresponding attached shadow boundary point is
a parabolic point on a surface. This may seem a pedantic
point until we consider the symmetry of the definitions of
attached shadow boundaries and their images on a light
source (see Fig. 7). The symmetry suggests that if a light
source were hyperbolic, cusps could appear in attached
shadow boundaries of an illuminated surface. The
analysis of intrinsic shadow geometry for light sources
that are not simply convex requires looking in more detail
at the behavior of the illumination surfaces for such light
sources. Because we feel that nonconvex light sources
are the exception rather than the rule, we will not present
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this type of analysis here, though we will point out one
result that is interesting; namely, that such cusps can
create nonsmooth (i.e., corner) parent—child intersections
between attached and cast shadow boundaries (effectively
created by cusps in the attached shadow boundary). One
lesson from this is that one has to be careful about gener-
alizing results from constrained domains such as point-
source illuminants to more general domains without first
testing them by rigorous analysis.

5. SHADOWS AT SURFACE CREASES

Surface creases are edges on a surface formed by discon-
tinuous changes in surface orientation. Attached shad-
ows may intersect surface creases or may be formed by
surface creases. Cast shadows may also intersect surface
creases. In this section we will analyze the geometric be-
havior of intrinsic surface shadows as they intersect or
are formed by surface creases. As it turns out, signifi-
cant information about surface geometry and light source
direction can be gleaned from the geometry of intrinsic
shadows at surface creases. It can determine whether a
crease is convex or concave, what the tilt of the light
source is, and whether an edge in the image is, in fact, a
crease between connected regions on a surface or is the
occluding contour of one object placed in front of another;
that is, it can be used to infer contact between surfaces.

Three significant shadow events can occur at a surface
crease:

e Intersection between an attached shadow and a
surface crease [Fig. 8(a)l.

e Formation of an attached shadow along a crease
[Fig. 8(b)].

e Intersection between a cast shadow and a surface
crease [Fig. 8(c)].

In the following sections we will analyze the qualitative
structure of shadow contours at such events and charac-

7

VA attached shadow ”]]]]]]I cast shadow

Fig. 8. Three categorically different shadow events at surface
creases. a, An attached shadow boundary may intersect a
crease. If the crease is concave and the surface apposite to the
attached shadow faces the light source (as in the figure), the side
of the crease with the attached shadow boundary will cast a
shadow on the other side. The resulting cast shadow boundary
will intersect the surface crease at the same point as the at-
tached shadow boundary and will be cotangent to the crease (see
text). The crease may, of course, be convex. b, The crease may
itself form an attached shadow boundary. c, A cast shadow
boundary may intersect a surface crease, which will generically
form a tangent discontinuity in the cast shadow boundary.
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Fig. 9. A concave crease is formed when a surface is created by
the solid union of two objects. A convex crease is formed when
one solid object is subtracted from another.

terize the information contained therein about both the
geometry of the surface crease and the light-source direc-
tion.

A. Definitions

We will formally model surface creases as having resulted
from the solid union or difference of two objects,?? as dem-
onstrated in Fig. 9. In either case, the local shape of a
crease at a point of intersection between two surfaces is
determined by the surface normals of the two surfaces.
In the case of solid union, the crease is concave, and the
surface normals of the creased surface at either side of
the crease are simply the surface normals of the two in-
tersecting surfaces. In the case of solid difference, the
crease is convex. The surface normal on one side of the
crease is equal to the surface normal of the subtracted-
from surface, while the surface normal on the other side is
the negative of the surface normal of the subtracted sur-
face.

According to the synthetic model just described, surface
creases are formed at the curves of intersection between
two surfaces, = 31 N X,. We will assume 7 to be pa-
rameterized as 7 : 7(¢); 0 < ¢ < 1. The surface shape
along 7 is given by pair of surface normals, N5 (¢) and
Ns(¢), immediately to either side of the crease, and the
unit tangent of 7 is defined as t, = (N3 ONy)/|NyONg]|.

B. Intersections between Attached Shadows and
Surface Creases

Figure 10 shows two examples of situations in which an
attached shadow boundary intersects a surface crease.
In general the attached shadow boundary will not extend
continuously on either side of a surface crease. Rather,
the surface on the side of the crease apposite to the at-
tached shadow boundary will be either illuminated or in
shadow. Intuitively, one would think that knowledge of
whether the surface on the side of a crease apposite to an
intersecting attached shadow boundary is illuminated or
in shadow could determine the direction in which the sur-
face bends at the crease, that is, whether the crease is
concave or convex. This turns out to be true. We will
describe here the invariant structure that can be used to
make such a determination.
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Figure 11 illustrates the local information available at
a point of intersection between an attached shadow con-
tour and a crease contour. This includes the direction of
the crease contour, the light-source direction, and a label
specifying whether the surface apposite to the attached
shadow contour is in shadow or is illuminated (the direc-
tion of the attached shadow boundary is largely irrel-
evant). Depending on what the orientation of the surface
crease is relative to the light-source tilt, illumination of
the apposite surface may reflect either convexity or con-

intersections

intersections

(b)

Fig. 10. Two examples of attached shadows intersecting a sur-
face crease. (a) The side of the surface apposite to the attached
shadow boundaries is illuminated, and the crease is convex. (b)
The side of the surface apposite to the attached shadow bound-
aries is illuminated, and the crease is concave. The inference of
crease convexity/concavity from shading across the crease de-
pends critically on the direction of the surface crease relative to
the light-source direction.
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attached shadow

=> Concave

*— surface crease

=> Convex

¥ surface crease

te'(p)
L'(p)

S(p)=illuminated

tc'(p)
L'(p)

S(p)=shadow

attached shadow

=> Convex

®— surface crease

attached shadow

=> Concave

®— surface crease

Fig. 11. Information available at an intersection between an attached shadow and a surface crease (point p): t.(p), the tangent di-
rection, in the image, of the surface crease; L’( p), the light-source direction, as projected into the image (i.e., the light-source tilt); and
S(p), a binary labeling of the shading on the side of the crease apposite to the attached shadow boundary—that is, indicating whether
it is illuminated or in shadow. The interpretation rule described in the text is illustrated here. (a) The tangent to the surface crease
is on the side of the light-source vector opposite to the attached shadow. (b) The tangent to the surface crease is on the same side of the

light source as the attached shadow.

cavity. If the tangent to the crease, oriented in the same
direction as the light source, is on the side of the light-
source vector “opposite” to the attached shadow bound-
ary, then the following inference holds: apposite surface
illuminated=concave crease; apposite surface in
shadow=convex crease. If the tangent to the surface
crease is on the same side of the light-source vector as the
attached shadow, then the opposite inference holds; that
is, apposite surface illuminated=convex crease; apposite
surface in shadow=concave crease.

We will only sketch the proof of the interpretation rule
here. To do this, we consider the relationships between
crease direction and surface shading in the tangent plane
of the surface. The surface normal on the attached
shadow side of the point of intersection is perpendicular
to the light-source direction, since it is on the attached
shadow boundary; therefore the tangent plane of the sur-
face on this side of the crease contains the local illuminat-

ing ray. By definition, it also contains the tangent of the
crease at the point of intersection. We can treat the sur-
face discontinuity at the crease as being formed (locally)
by folding the tangent plane along the tangent of the sur-
face crease. Ifit is folded up, the crease is concave; if it is
folded down, the crease is convex. It is easy to show that
if the crease tangent is parallel to the light-source direc-
tion, the attached shadow boundary will extend continu-
ously (with a tangent discontinuity) across the crease re-
gardless of how the surface is folded at the crease; that is,
the surface immediately adjacent to both sides of the
crease will be on attached shadow boundaries. This re-
quires nongeneric positioning of the surface, however,
and in general the surface apposite to the attached-
shadow boundary will either be illuminated or in shadow,
as stated above.

For convenience, we can define a coordinate system in
the tangent plane of the surface (on the attached shadow
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side of the crease) in which the light source direction is
taken to be vertical. Similarly, we can define the orien-
tation of the crease tangent so that it points in a positive
y direction in this coordinate system (i.e., it points toward
the light source). With these definitions, consider the
case that the crease tangent points to the side of the ver-
tical that contains the attached shadow boundary [Fig.
11(b)]. In this case, it is easy to show that folding the
surface up on the side of the crease apposite to the at-
tached shadow boundary will put that side of the surface
in shadow, whereas folding it down will expose that side
of the surface to the light source. If the crease tangent
points toward the opposite side of the vertical, the oppo-
site relations hold [Fig. 11(a)]. Since the qualitative re-
lations between light-source direction and the crease tan-
gent are maintained under perspective projection, the
same rules apply in the image, taking the light-source tilt
(the projected direction of illumination) as the vertical.
This results in the interpretation rule illustrated in Fig.
11.

If the crease is concave and the surface apposite to the
attached shadow boundary is illuminated [as in Fig. 8(a)],
the surface on the attached shadow boundary side of the
crease will, in general, cast a shadow on the other side of
the crease. The cast shadow boundary intersects the sur-
face crease at the same point as the attached shadow and
is cotangent to the surface crease at the point of intersec-
tion (see Appendix C for a proof). The cotangency of sur-
face crease and cast shadow boundary is a useful property
for contour labeling, a point we elaborate on in Subsection
6.C below.

C. Formation of Attached Shadows at Surface Creases
Surface creases, when convex, can themselves form at-
tached shadow boundaries when the surface on one side
of the crease is illuminated and the surface on the other
side is in shadow. Holes in surfaces are classical ex-
amples of such events. Attached shadows of this sort
provide no information about surface geometry that is not
provided by the shape of the crease contour itself, al-
though a determination that an attached shadow bound-
ary is also a surface crease does imply that the surface
crease is convex.

D. Intersections between Cast Shadows and Surface
Creases
A final type of intersection between shadow contours and
surface creases is formed where a cast shadow boundary
intersects an “unrelated” surface crease, as in Fig. 8(c).
Shafer and Kanade® have shown that the behavior of cast
shadow contours at such intersections provides strong
quantitative constraints on surface interpretation when
the casting shadow boundary is a straight surface crease
and is visible in the image. These constraints are, how-
ever, by no means enough to uniquely determine surface
shape at a crease. In this section we report two related
qualititative constraints on scene interpretation provided
by the shapes of cast shadow boundaries at intersections
with surface creases. These constraints do not require
any information about the shape of the casting edge and
hence may be applied locally.

Figure 12 shows an example of a shadow cast over a
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Fig. 12. The uniqueness constraint limits the range of plausible
light-source directions for a cast shadow making a particular
angle in the image at an intersection with a surface crease. The
physically realizable light sources lie in quadrants of the image
demarcated by the tangent directions of the cast shadow contour
immediately to either side of a crease, as shown.

surface crease. The shape of the cast shadow contour
provides information about both the light-source direction
and the shape of the underlying surface. This results
from what we will refer to as a uniqueness constraint on
the correspondence between attached shadow boundaries
and cast shadow boundaries. Each point on an attached
shadow boundary may project to one and only one point
on a cast shadow boundary along the illuminating ray.
Similarly, only one point on a cast shadow contour may
project along the image of an illuminating ray. In the
figure, L* is not a physically possible light source, regard-
less of crease convexity/concavity.

A qualitative constraint on surface shape interpreta-
tion follows naturally from the light-source constraint. If
the image of the light source lies in the concave side of a
cast shadow contour at a crease, the crease should be in-
terpreted as being concave; otherwise, it should be inter-
preted as being convex. This follows from the facts that
the image of the casting edge must be on the same side of
the contour as the light source, and, as Shafer and
Kanade® showed, the convexity/concavity of a crease can
be determined by whether the shadow contour at the
crease bends away from the casting edge or toward it.
Note that the image of the casting edge is not needed to
make the inference, only whether the illuminant is from
one side of the contour or the other. Thus in Fig. 12 an
assumption that the light source is from above should dis-
ambiguate the qualitative shape of the crease to be con-
vex.

6. IMPLICATIONS

In this paper we have exhaustively analyzed the qualita-
tive geometric structure of shadow contours, for both
smooth surfaces and piecewise smooth surfaces (surfaces
with creases) and for both point light sources and ex-
tended light sources. Along the way, we have high-
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lighted features of the geometry that can provide useful
information about scene structure. Since these observa-
tions were scattered through the different sections of the
paper, we will summarize them here in a concise form.
We have not attempted to derive techniques for inferring
surface or light-source geometry from shadows for the
simple reason that the information provided by shadows
only loosely constrains such inferences. Using only
shadow information to interpret surface geometry, for ex-
ample, would require imposing strong prior constraints
on surfaces. Shadows do, however, provide salient infor-
mation that would be useful in conjunction with other
cues, and it is in this spirit that we present our summary
of results.

A. Light-Source Direction

Light sources located a large distance away from a sur-
face may be approximated as point sources at infinity and
characterized by the global slant and tilt of the rays illu-
minating the surface. Intrinsic shadows provide two lo-
cal sources of information that directly determine the tilt
of surface illumination: the tangent direction of attached
shadows at intersections with smooth occluding contours
(equivalently, the tangent directions of occluding contours
at such intersections) and the tangent direction of at-
tached shadow contours at intersections with their corre-
sponding cast shadows. Moreover, global information is
provided by the implicit lines connecting L junctions be-
tween cast and attached shadow contours and corre-
sponding L junctions between cast shadow contours (see
Fig. 6). Taken together, these cues overdetermine the il-
luminant tilt, itself an important parameter in the esti-
mation of shape from shading.

B. Surface Shape

The cues provided about surface shape by intrinsic shad-
ows may be broken into two classes: smooth surface
shape and surface shape at creases. The local informa-
tion provided by intrinsic shadows about smooth surface
shape is sparse. The local orientation of an attached
shadow contour provides some constraint on the curva-
ture structure of surfaces (see Appendix A), but given the
multidimensional character of local curvature, the con-
straint is weak. Somewhat counterintuitively, the local
curvature of attached shadow contours, except at inter-
sections with occluding contours, depends not only on lo-
cal surface curvature but also on the third-order structure
of local surface shape. Unlike smooth occluding con-
tours, inflection points in attached shadow contours do
not have any useful invariant relationship to local surface
shape. The only such invariant relationship that exists
is that at points of intersection between related attached
and cast shadow contours, the tangent direction of the
contours is an asymptotic direction of a surface. A more
promising application of shadow information for smooth-
shape interpretation may be to the global structure of sur-
faces; that is, as a source of information about the pres-
ence of hills, dimples, etc., on surfaces. In this context,
qualitative shadow information could well be incorpo-
rated into qualitative shape-reasoning systems proposed
for occluding contours.?® An example of such an ap-
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proach would be to extend the notion of an aspect graph?*
to include the topological structure of shadow contours.

Unlike for regular (smooth) points on a surface, intrin-
sic shadow contours, both attached and cast, provide
strong constraints on qualitative surface geometry at sur-
face creases. The local structure of intersections between
attached shadow contours and surface creases, in con-
junction with the qualitative shading at the point of in-
tersection, reliably determines the convexity and concav-
ity of a crease [Subsection 5.B]. The shape of cast
shadow contours at intersections with surface creases
also determines crease convexity/concavity [Subsection
5.D].

C. Contour Labeling

Shadow contours provide salient cues to contour labeling
and attachment (to which side of an image a contour be-
longs). In particular, the geometry of shadow contours at
intersections with other contours can provide a useful cue
to the nature of the intersecting contour. If an attached
shadow contour is cotangent to another contour at a point
of intersection, one can reliably infer that the contour is a
smooth occluding contour and that the contour is at-
tached to the side with the attached shadow contour (this
derives from previous analyses of extrinsic and intrinsic
surface markings'®). The constraints on shadow geom-
etry at surface creases also allow one to draw inferences
about contour labeling and attachment. When a surface
to one side of a concave crease casts a shadow on the other
side (see Fig. 8), the cast shadow contour intersects the
crease at the same point as its parent attached shadow
contour and is cotangent to the crease at the point of in-
tersection. Violations of either of these constraints for
cast shadow contours provide information that the inter-
secting contour is not, in fact, a surface crease but rather
a contour occluding the surface containing the cast
shadow. In a naturalistic setting, such information can
be used to determine the contact between objects (e.g., be-
tween a cylinder and a tabletop).

APPENDIX A

We derive here the quantitative relationship between the
shape of an attached shadow contour and the shape of the
underlying surface, assuming orthographic projection
into the image plane. Because the analysis depends only
on the fact that an attached shadow boundary is conju-
gate to the illumination direction, it holds for all three
light sources considered in the text: infinite point
sources, point sources at a finite distance from a surface,
and extended light sources. The resulting relationships,
however, increase greatly in complexity for extended
sources, since the variables describing light source direc-
tion at a point are local.

For simplicity, we will consider a point source at infin-
ity for the analysis and comment on how it generalizes to
the other types of light sources. Two cases are of interest
to us: the local behavior of an attached shadow contour
at a regular point and the local behavior of the contour at
an intersection with a self-occluding contour. For both
cases we assume the surface to be locally parameterized
[2:X = X(u, v)] so that X, = e; = LON and X, = e,
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= L, where L is a unit vector in the direction of the light
source and N is the unit normal vector of the surface at
the point of interest. The unit vector that is conjugate to
L, as expressed in terms of the coordinate system
{e1, ey}, is given by

g - |
t= (F2+ g2 (f2+ %))

where f and g are the last two coefficients of the second
fundamental form of the surface.?>?® Since the tangent
vector of the attached shadow boundary is conjugate to L,
we may consider t to be the unit tangent to the attached
shadow boundary.

The tangent vector t of the attached shadow boundary
may be related to the tangent vector of its image (the tan-
gent of the attached shadow contour) T by

(A1)

@OV)ON
t= —————, (A2)
[T OV)ON]

where V is the unit normal vector of the image plane di-
rected toward the surface (the viewing direction). Using
the relation

(t, e;) =(t, LON) = W’ (A3)
we have
~ 8
|(t OV) ON] { ) > (f%+ gH'?
(A4)
——— (tOV,L) —(tOV, NN, L
|(t|Z|V)DN|(<~ ) — (& YN, L))
T
and, since (N, L) = 0, we have, finally,
g
#0OV,Ly= —————— (A6)

= (F2+ g’

We see that at regular points of an attached shadow con-
tour, its orientation, as expressed by t OV, is directly re-
lated to the local curvature structure of a surface. The
curvature of the contour is related to the third-order dif-
ferential structure of the surface.

At a point at which an attached shadow contour inter-
sects a self-occluding contour, the previous analysis does
not hold, as the normal of the surface is orthogonal to the
line of sight. We note that the curvature vector of a
curve may be decomposed into orthogonal components;
one in the direction of the surface normal and one in the
tangent plane of the surface. In the case that the surface
normal is orthogonal to the line of sight, only the compo-
nent of a curve’s curvature in the direction of the surface
normal affects the curvature of the contour to which the
curve projects. Since the length of the curvature compo-
nent in the normal direction of the surface is the normal

[(E0V) ON|
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curvature of the surface, we can relate the curvature of
the contour, k,, to the normal curvature of the surface.
This is given by

1

Ks = oin? & Kkn(t), (A7)
where ¢ is the angle made by the tangent vector of the
curve and the viewing direction and «,(t) is the normal
curvature of the surface in the tangent direction, t. In
the coordinate system defined above, we have for the nor-
mal curvature in the tangent direction of an attached
shadow boundary (based on the fact that it is conjugate to
the lighting direction)

_gleg — f?)

where e, f, and g are the three coefficients of the second
fundamental form of the surface. We therefore have

gleg — f?)
f*+g°
It remains to express sin® ¢ in terms of e, f, and g and the
direction of illumination. Letting ¢ = 6 — o, where 0 is
the angle made by the tangent of the attached shadow
boundary and the illuminant direction, and o is the angle

made by the viewing direction and the illuminant direc-
tion, we have

(A8)

Kn(

1

sin? ¢

(A9)

1

KS = . . 2
(sin 6 cos o — cos 0 sin o)

gleg — f2)}

f*+g°
(A10)

Noting that the tangent direction of the attached shadow
boundary is (g/Vf2 + g2, —f/\f2 + g2)7 in the coordi-
nate system {(L O N), L}, we have

gleg — f?)

s_(]"sin0'+gcoso-)2'

K (A11)

For a sphere, we have e = g = 1/R, where R is the ra-
dius of the sphere and f = 0, so that

1
Ky = ——5— (A12)

* Rcos?o’
and since for a sphere the curvature of the occluding con-
tour, k., is given by x, = 1/R, we have

cos? ¢ = —, (A13)

so that in this special case, the light-source slant can be
determined by the ratio of curvatures of a self-occluding
contour and an attached shadow.

The above analysis generalizes to point sources a finite
distance from the illuminated surface and to extended
light sources. The only difference is that the orientation
of the local coordinate system used to define e, f, and g
varies more in the latter two cases as an attached shadow
contour is traversed, since L changes. Moreover, the il-
luminant slant becomes a local variable defining the slant
of the local illuminating ray.
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APPENDIX B

In Section 2 we claimed that a shadow boundary is
smooth up to its first derivative at a junction where it
changes from being attached to cast. We offer a simple
proof of this here. Recall the definition of a cast shadow
boundary given in Section 2: that as the curve y on the
surface 3 formed by the intersection of the sheaf of light
rays passing through « (the illumination surface) and X
at points away from a. More formally, we chose the par-
ticular parameterization of y that associates each point
on y with the point on « that lies on the same light ray;
thus we have as the defining condition for y:

t) — alt
% = L(t); () # a(t),
y(t) € 3, ky[a'(t)] >0, (BD)

where L(¢) is a unit vector in the direction of the light ray
illuminating «(¢). The last condition captures the fact
that only potentially visible parts of an attached shadow
(where the surface is convex in the direction of the illumi-
nating ray) cast shadows on the surface.

Since v is defined only for potentially visible portions of
a, we are interested in the limiting behavior of y'(¢) as we
approach the point, ¢t = 7, at which vy joins with « (at this
point « changes from being potentially visible to being in-
visible, hence yis undefined at 7). We will assume that «
is oriented so that ¢ is increasing as «(7) is approached
from the potentially visible part of «; thus we are inter-
ested in the one-sided limit, lim, ,,-y'(¢). The tangent
vector of ¢ at t = 7, a'(7), is in the direction of the light
ray illuminating the point (see Subsections 2.C and 3.B);
therefore we can express the proposition in the relation

Y'(t)

lim ——
@]

= L(7). (B2)

t—1

We will prove this assertion for the three cases considered
in the text: a point source at infinity, a point source at a
finite distance from the surface, and a convex extended
source.

Case 1: point source at infinity.

Differentiating both sides of Eq. (B1), we obtain

Y'(t) — a'(2)
|7(¢) = a(t)|
D) — «®OXy' (@) — a0, e) —at)
[y(t) — a(t)|? ’
(B3)

since L(¢) = L is a constant. Substituting from Eq. (B1)
and simplifying gives

Y () =a'(t) + L[(y'(¢), L) — (a'(¢), L)]. (B4)

Normalizing and taking the limit as ¢ — 7, we obtain for
the unit tangent vector of y

Knill et al.
lim Y'(¢) — lm a'(t) + L((y'(t), L) — (a'(¢), L))
oY@l e’ (@) + Ly (6), L) = (a'(t), L)]”
(B5)
and since o'(7)/|a’'(7)| = L, we obtain
L(lim y'(¢), L)
lim 20— T - L (B6)
-y @ (lim y'(8), L) '
t—71

This completes the proof for a point source at infinity.

Case 2: point source at a finite distance from the sur-
face.

The situation differs from the previous one in that L(z)
is not a constant but rather is given by L(¢) = (a(?)
— M/|a(¢) — \|, where \ is the position of the light
source in space. Since the left-hand side of Eq. (B1) does
not involve L(¢), we need merely show that the right-
hand side, when differentiated, is equal to 0 at ¢ = 7, as it
was for a point source at infinity. We have

a'(t) (a(t) = M)(a'(t),a(t) = \)

L'(t) =

la(t) — N la(t) — AP
@) - L)' (1), Lt)) -
- la(t) — A|

Setting ¢ = 7 and noting that o'(7)/|a’(7)| = L(7), we
obtain
a'(1) — a'(1){a'(7), &'(D)|a’(7)* 3

Lin = la(7) — |

>

(B8)

completing the proof.

Case 3: convex, extended source.

The situation is similar to case 2, differing only in that
L(¢t) is given by L(t) = [a(t) — N&)])/|a(t) — N(2)],
where \(¢) is not a constant but rather is the illuminant’s
image of a(t), as defined in Section 3. We will find it
convenient to express the cast shadow boundary con-
straint in a somewhat different form, namely,

Y(t) —AE) _ e(t) — N
ly(t) = N@)|  [a(t) — N(®)|”

y(&) # a(t).
(B9)

Differentiating both sides, we obtain, with some simplifi-
cations,

Y - N0 LK () - N0, L)
[y(¢) = \(2)] [y(t) — \(2)]
C @ - V() La'(®) - N (1), L)
= Talt) = @) at) — o) (B1O

Taking the limit as ¢ — 7~ and noting that lim,_ -y (¢)
= a(7), we obtain

lim ¥'() = a'(7) = M'(7) = L(n){a’(7) = N'(7), L(7))

t—T1

t—T1

+N(7) + L(r)<lin{ Y'(t) — N(7), L(7)\,

(B11)
which, when simplified, gives
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lim y'(¢) = L(T)< lim ' (¢), L(T)>, (B12)

t—T1 t—T1

and we have, as before,

lim 9'(¢)
Y'(2) tor”
li = = = L(7). B13
I @l = Tim o) - M0 G189
t—71

This completes the proof.

APPENDIX C

In Section 5(b), we claimed that when the surface on one
side of a concave surface crease casts a shadow on the sur-
face on the other side, the resulting cast-shadow bound-
ary is cotangent to the surface crease at the point of in-
tersection between the two (Fig. 8). We prove this
assertion here for an extended light source.

The cast-shadow boundary formed by a smooth at-
tached boundary is the intersection of the illumination
surface corresponding to the attached boundary and the
illuminated surface. The tangent direction for a point on
the cast-shadow boundary is then given by

~ N.(t) ON(#)
~INL(t) ON,®)]”

where N,(¢) is the surface normal at a point along the
smooth attached-shadow boundary (and thus of the illu-
mination surface along the corresponding ray), and N (¢)
is the surface normal at the corresponding point of the
cast-shadow boundary. Let us represent the point of in-
tersection between the smooth attached-shadow bound-
ary and a concave crease as 7(7). As xn(tau) is ap-
proached, N, approaches N5 (7) (the surface normal on
the casting side of the surface crease) and N, approaches
Ng (7) (the surface normal on the other side of the surface
crease); thus we have at the point of intersection

t(t) (cy

o N0 0N No(n) ONi(n)
AD = Im e AN, O]~ Na () ONL ()]
©2)

This is the definition of the tangent direction of the
crease; thus, t,(7) = t,(7). The tangent directions of
the cast-shadow boundary and surface crease are equal at
the point of intersection. Cotangent curves in the world
project to cotangent contours in the image. QED.H

t—T1
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