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Visual processing is fraught with uncertainty: The visual system
must attempt to estimate physical properties despite missing
information and noisy mechanisms. Sometimes high visual un-
certainty translates into lack of confidence in our visual perception:
We are aware of not seeing well. The mechanism by which we
achieve this awareness—howwe assess our own visual uncertainty
—is unknown, but its investigation is critical to our understanding
of visual decision mechanisms. The simplest possibility is that the
visual system relies on cues to uncertainty, stimulus features usu-
ally associated with visual uncertainty, like blurriness. Probabilistic
models of the brain suggest a more sophisticated mechanism, in
which visual uncertainty is explicitly represented as probability dis-
tributions. In two separate experiments, observers performed a vi-
sual discrimination task in which confidence could be determined
by the cues available (contrast and crowding or eccentricity and
masking) or by their actual performance, the latter requiring amore
sophisticated mechanism than cue monitoring. Results show that
observers’ confidence followed performance rather than cues, in-
dicating that the mechanisms underlying the evaluation of visual
confidence are relatively complex. This result supports probabilistic
models, which imply the existence of sophisticated mechanisms
for evaluating uncertainty.

decision making | visual perception

Performance in a visual task cannot be perfect. When we try to
infer some property of the physical world from visual data,

there is always the chance that we will make a mistake. The
possibility of error signals objective visual uncertainty: the more
visual uncertainty, the higher the probability of an error. When
asked how confident we feel in our visual judgment, we find it
natural to estimate how strong that uncertainty is, if only by
saying that we do not see well. Thus, the level of confidence
actually reported by observers is a measure of subjective visual
uncertainty.
It has been known for some time that performance and con-

fidence usually correlate in human observers (1), and more re-
cently this has also been observed in certain nonhuman species
(2). If one asks observers to recognize blurry letters, both con-
fidence and performance will decrease with the amount of blur.
Although this fact seems intuitively obvious, the mechanisms
involved in the correlation between performance and confidence
have only recently begun to be investigated (3–6). A wide array
of mechanisms could account for such a correlation, and finding
out which one is actually at work could yield important insights
into decision-making processes in the brain (7).
In any given visual task, such as letter recognition, perfor-

mance is determined by a large number of factors: Some have to
do with the stimulus (its level of blur, its size, etc.), some have
to do with its context (surrounding letters), and some have to do
with the internal constraints of the visual system (neural sto-
chasticity, the shape of receptive fields, the availability of at-
tentional resources, etc.). Some probabilistic models of the brain
suggest that all these factors are taken into account in the de-
cision and that uncertainty is represented explicitly (8–10), as in
Barlow’s suggestion that neurons fire in accordance with the
probability that their target feature is present (11). In that view
the brain operates directly in terms of probability distributions,

updating them as information comes in. For our purposes we call
these models uncertainty explicit: All of the probabilistic infor-
mation is encoded explicitly in the system, so that there is no
need for specific mechanisms to estimate uncertainty. Observers
have all of the information they need to determine what their
expected level of performance should be, simply by reading out
the relevant probability distributions. If the visual system were
uncertainty explicit, this would account naturally for the corre-
lation between confidence and performance: Confidence follows
performance, because uncertainty is kept track of throughout the
decision process. This assumption is embedded in a lot of recent
and influential work and has shown considerable empirical suc-
cess (12–14).
A much simpler (and so far overlooked) mechanism could

explain the classical finding that confidence follows performance:
the visual system could simply monitor certain image properties,
like blurriness. Everything else being equal, more blur always
implies lower visual performance; blurriness is therefore a valid
cue to visual uncertainty. Other valid cues include contrast, ret-
inal size, eccentricity in the visual field, etc. In the context of
a given visual task one cue often dominates the others—it
accounts for much of the variation in performance. That domi-
nance would be the case of blurriness in reading or contrast in
detection. A radically simple way of determining confidence is
therefore for the visual system to measure the dominant cue. This
measurement would account for the correlation observed in pre-
vious experiments between performance and confidence: Difficulty
varies along one obvious stimulus dimension (e.g., signal-to-noise
ratio in an external noise task, blurriness) and so does confidence,
because confidence is determined from that particular stimulus
dimension. In this case the process of measuring confidence is
separate from the perceptual process—both are based on physical
attributes of the stimulus, but are otherwise independent.
Here we report the results of two experiments that aimed at

testing the cue-monitoring hypothesis. In our tasks, performance
was modulated by not one but two physical variables: contrast
and crowdedness in the first experiment and eccentricity and the
amount of masking in the second experiment. The cue-moni-
toring hypothesis implies that confidence should be determined
by obvious cues to uncertainty like contrast in the first experiment
or eccentricity in the second. The alternative is that, despite the
joint manipulation of two physical variables, confidence should
still follow performance, as suggested by uncertainty-explicit
models. The results clearly refute the cue-monitoring hypothesis,
which shows that confidence evaluation has to be sophisticated
enough to keep track of at least two interacting sources of un-
certainty. This result in turn favors probabilistic models of the
brain, which directly implement such sophisticated mechanisms.
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Results
Experiment 1. Observers had to judge the orientation of a target
[clockwise (CW) or counterclockwise (CCW) of the vertical] sur-
rounded by four distractors. The stimulus was presented in the
periphery of the visual field, to make the task challenging. The
difficulty of the task depends on the orientation of the distractors:
Vertical distractors, because their orientation is similar to that of
the target, induce a crowding effect (15, 16); they reduce discrimi-
nation performance compared with horizontal distractors (Fig. 1).
Another way to manipulate difficulty is to lower the contrast of

the target patch: the lower the contrast, the lower the perfor-
mance. Because of the crowding effect, at equal contrast levels,
we expect performance to be higher with horizontal distractors
than with vertical ones. This expectation implies that there are
uncrowded stimuli that yield higher performance than crowded
stimuli, despite having lower contrast (Fig. 2).
In each trial of the experiment, two stimuli were displayed

successively in different locations but at the same eccentricity.
Observers were instructed to attend to the two stimuli and pick
the one for which they felt more confident they could make
a correct orientation judgment (a forced choice of confidence)
(6). They then had to report the perceived orientation of the
stimulus they picked and of that one alone.
Suppose an observer is shown two stimuli, one crowded with

contrast xC and the other one uncrowded with contrast xU. Which
one will they choose as less uncertain? Three possible strategies
are summarized in Fig. 3. According to the cue-based hypothesis,
there are two valid cues to uncertainty that can be used in that
context: crowdedness (crowded implies uncertainty) and contrast
(low contrast implies uncertainty). Using the crowdedness cue,
observers will always pick the uncrowded stimulus as less un-
certain, whatever the contrasts of the two stimuli are. This result
is suboptimal whenever the contrast of the crowded stimulus is
high enough to induce higher performance than the uncrowded
stimulus. When the contrast of the crowded stimulus is very high
and the contrast of the uncrowded stimulus is very low, the
sensible strategy is to choose the crowded stimulus and not the
uncrowded one.
If instead observers use the other available cue, contrast, then

we expect them to pick the stimulus with higher physical con-
trast: i.e., the crowded one whenever xC > xU. However, if xU is
such that the uncrowded stimulus yields higher expected per-
formance, then the best option is to go instead with the un-
crowded stimulus, and this is what we expect observers to do if
they are able to take into account the effect of crowding in their
judgments of confidence. A performance-based strategy requires
more flexibility than the use of cues.
Contrast levels in our experiment were chosen so that for

certain contrast pairs it was more advantageous to choose the

crowded stimulus and for other pairs it was the opposite. No cue
(contrast or crowdedness) was able to predict the right choice for
all possible pairs, so we set out to test whether observers fol-

Fig. 1. Stimuli used in experiment 1. Stimuli consisted of five Gabor patches
arranged on a cross. The central patch is the target, and the others are
distractors. When viewed at high eccentricities, vertical distractors (B) induce
a crowding effect on the target: The orientation of the target tends to as-
similate with the similar orientation of the distractors, making small devia-
tions from the vertical more difficult to discriminate. This effect does not
occur with horizontal distractors (A), which are less similar in orientation.
The crowding effect can be experienced by holding the figure at arms’
length and fixating a few centimeters off the targets.
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Fig. 2. Crowding effect on performance. In the baseline condition observ-
ers chose between two stimuli with the same distractor orientation and the
same target contrast (i.e., they were identical with the exception of target
orientation, which was random). We varied the contrast of the stimulus and
the orientation of the distractors across trials. (A) Data for observer AF. The
blue and red circles represent measured frequency correct with horizontal
and vertical distractors. Psychometric functions were fit to the data to
summarize the effect of contrast on performance. (B) Psychometric functions
for all six observers: Performance was systematically lower with vertical
distractors than with horizontal ones (at equal contrast levels), showing that
vertical distractors reliably induce a crowding effect.
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Fig. 3. Principle of the experiment. The red and blue curves describe hy-
pothetical psychometric functions: They give an observer’s expected per-
formance as a function of contrast in the crowded and uncrowded
conditions, as in Fig. 2. Suppose we always give the choice between a fixed,
uncrowded stimulus with contrast xU and another, crowded stimulus with
contrast xC. How can we set xC to make the observer feel more confident
about the crowded stimulus? According to the cue-monitoring hypothesis,
two cues to uncertainty are available: contrast and crowdedness. If the ob-
server picks crowdedness as a cue, then he or she will always prefer the
uncrowded stimulus, no matter what the value of xC. If the observer uses
contrast as a cue, then he or she should prefer the crowded stimulus as soon
as xC > xU. Alternatively, if confidence follows performance, what the ob-
server should do is choose the crowded stimulus as soon as it yields a higher
expected performance: here, any point beyond x∗C. As shown above the plot,
for any xC > xU, the predictions of the performance-based hypothesis differ
from those of either of the two cue-based models.
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lowed one of the cues or were instead more flexible in their
strategy, choosing according to expected performance.
To be able to interpret the data, we needed to know what

choice observers ought to make to maximize performance when
confronted with a particular pair of stimuli (xC, xU): As Fig. 3
shows, we needed to evaluate the probability of responding
correctly at contrast x in the crowded and uncrowded conditions.
This was done by inserting baseline trials in which the two stimuli
displayed had the same crowdedness and the same contrast: i.e.,
the observers saw two crowded stimuli ðxC; xCÞ or two uncrowded
stimuli ðxU; xUÞ. We measured observer’s orientation discrimina-
tion performance as a function of contrast. The results are shown
on Fig. 2. As expected, the data clearly display an effect of dis-
tractor orientation: thresholds are higher in the crowded con-
dition for all observers. We fit psychometric functions ΨCðxCÞ and
ΨUðxUÞ to the data: They represent the expected performance of
anobserver if theyare tomakeanorientation judgment for acrowded
stimulus at contrast xC or an uncrowded stimulus at contrast xU. If
the observer is presented with a pair ðxC; xUÞ, then it is advanta-
geous to choose the crowded stimulus ifΨCðxCÞ=ΨUðxUÞ> 1.Wecall
the ratioρðxC; xUÞ ¼ ΨCðxCÞ=ΨUðxUÞ the expected performance ratio.
We also ran control conditions in which the observer chose

between two stimuli that were both crowded or both uncrowded,
but with different contrast levels. In that condition the ideal
strategy agrees with the contrast heuristic: The observer should
pick the stimulus with more contrast, and this is what they did.
We refer the reader to SI Materials and Methods (Figs. S1, S2,
and S3) for details, but the data confirm that the larger the
contrast difference was between the two stimuli, the more likely
observers were to pick the stimulus with the higher contrast.
The most interesting condition pits an uncrowded stimulus

against a crowded stimulus. These results appear in Fig. 4, where
each section corresponds to the results for one individual ob-
server. We plot response surfaces: For a stimulus pair ðxC; xUÞ the
color of the corresponding point on the plot represents the
probability of choosing the crowded stimulus. We smoothed
the raw data using multivariate adaptive regression splines,
a nonparametric technique that is neutral with respect to the
different hypotheses tested (Materials and Methods).
The thick line in each section of Fig. 4 represents the equal

performance contour ρðxC; xUÞ ¼ 1 of the observer. On the left-

hand side of the equal performance contour observers could
maximize performance by choosing the crowded stimulus, and
on the right-hand side they could maximize performance by
choosing the uncrowded stimulus. The green dashed line is the
line of equal contrast xC ¼ xU: Above that line crowded stimuli
have a higher contrast than uncrowded stimuli.
The model predictions are illustrated in Fig. 5. The cue-based

hypothesis predicts that choice will be based on either contrast
alone or crowdedness alone. The contrast heuristic predicts the
observer will pick the crowded stimulus if xC > xU. The crowded-
ness heuristic predicts the observer will always choose the un-
crowded stimulus regardless of the values of xC and xU. An observer
who is better aware of their true performance will choose stimuli in
accordance with ρðxC; xUÞ: i.e., they will pick the crowded stimulus
if ρðxC; xUÞ> 1 and the uncrowded stimulus otherwise.
As can be seen by comparing the individual results with the

(idealized) model predictions, the results reject the two versions
of the cue-based hypothesis. A bootstrap analysis shows that this
conclusion is robust (SI Materials and Methods, Figs. S4 and S5).
The cue-based hypothesis fails to predict observers’ choices in
our task: Confidence cannot be determined by contrast or
crowdedness alone. Qualitatively speaking, the results seem to
better agree with the performance-based hypothesis—observers
tend to choose the stimulus that brings the higher average per-
formance, although deviations from ideal behavior are apparent
in the response surfaces of at least some observers. There
appears to be a tendency to go on choosing the uncrowded
stimulus rather than the more advantageous crowded stimulus, at
least when the difference between the two is small.
A possibility remains, however, that the cue that determines

confidence is the perceived tilt of the target. A potential expla-
nation could run as follows: Because of a pooling of orientation
signals in the crowded condition, the distractors reduce the
perceived tilt of the target, so that targets are perceived as more
vertical than they are. Reducing the contrast could also reduce
perceived tilt (for reasons that are less evident), and therefore the
results could be due to a strategy of picking the stimulus with the
higher perceived tilt: For stimuli with equal contrast, this would
be the uncrowded stimulus. To gain further evidence that the
evaluation of confidence was not cue based, we ran another ex-
periment in which no such indirect mechanism could be posited.

Fig. 4. Individual results for the uncrowded vs. crowded condition in experiment 1. The observer had to choose between two stimuli, one crowded and the
other uncrowded, with target contrasts xC and xU. We plot the probability of choosing the crowded stimulus as a response surface. The solid black contours
are contours of the expected performance ratio: ρðxC; xUÞ ¼ 1 means that the observer had equal probability of making a correct orientation judgment by
picking either stimulus. The expected performance ratio is computed from the results of an independent baseline condition (Fig. 2) and shown along with 10–
90% bootstrap quantiles (dashed lines) (SI Materials and Methods). The green dashed line is the line xC ¼ xU: Note that the contrast levels for crowded stimuli
were on average higher, because the case xC < xU is relatively uninteresting in the context of this experiment (all theories predict that the observer should
choose the uncrowded stimulus). NM performed under different feedback conditions than the other five observers (Materials and Methods).
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Experiment 2. Experiment 2 is nearly identical in design to ex-
periment 1, but replaces crowding with backward masking (17)
and variations in contrast with variations in eccentricity. Observers
were asked to make orientation judgments about “Landolt’s C”
stimuli that faced either upward or downward (Fig. 6). Stimuli
were presented briefly and followed by a noise mask; the time
interval between the stimulus and the mask (interstimulus in-
terval, ISI) determines the strength of masking. The ISI could last
either 250 or 0 ms. For simplicity we refer to the latter case as
“masked stimuli” and to the former as “unmasked stimuli.”
In experiment 1 we chose to vary contrast because of its

plausibility as a universal cue to uncertainty: Lower contrast al-
ways means poorer performance. In experiment 2 we varied
eccentricity, because like contrast it is highly plausible as a cue to
uncertainty—generally speaking, the further objects are from the
fovea, the less information is available about their features. If
judgments of visual uncertainty were cue based, we would expect
eccentricity to be used as a cue. In all other respects experiment
2 is identical to experiment 1: Two stimuli were displayed suc-
cessively, and observers were asked to choose the one for which
they felt more confident. None of the observers who took part in
experiment 2 had previously taken part in experiment 1.
The results of the baseline condition confirm the presence of

a masking effect for zero ISIs (Fig. S2), so that we can legiti-
mately refer to these stimuli as masked. The results of the con-
dition pitting a masked against an unmasked stimulus confirm
that a cue-based mechanism cannot be at work (Fig. 7). Again,
the data show that observers tend qualitatively to accord to
a performance-based mechanism, although substantial biases are
sometimes present: Observer BD, for example, has a strong bias in
favor of masked stimuli. The results of experiment 2 confirm those
of experiment 1: The evaluation of visual uncertainty must involve
a process that is more complex than single-cue monitoring.

Discussion
In previous investigations of visual confidence, expected per-
formance was tied to a unique, obvious physical variable. The
reported correlation between performance and confidence could
be explained by a cue-based strategy. Because we used a task in
which performance depended on two physical variables, we were
able to show that simple heuristics based on cues cannot account
for observers’ confidence judgements when comparing crowded
and uncrowded stimuli. Confidence seems to follow performance
quite accurately. This result effectively rules out the most simple
mechanism available, but leaves open a number of possibilities.
Instead of using just one cue, it could be that the visual system
keeps track of cue combinations (contrast and crowdedness,
contrast and blurriness, blurriness and speed, . . .). The combi-
natorial explosion involved makes this difficult: The visual system
would have to evaluate the impact on confidence of every two-
way interaction, every three-way interaction, etc. A Bayesian
mechanism (8–10) appears comparatively more likely, but there
are difficulties with that hypothesis as well. Generally speaking, it
is far from clear how realistic neural networks could implement
the difficult computational problems arising in Bayesian inference.
Even if we restrict the discussion to the relationship between
confidence and performance, some outstanding issues remain.
There is a stark contrast between the accurate evaluation of

uncertainty predicted by Bayesian models and the general out-
look from the literature on decision making under uncertainty.
Following the seminal work of Kahnemann and Tversky (18),
innumerable biases have been found in human judgment. Some
of them are errors of statistical reasoning, which are not at stake
here. Others are deviations from optimal behavior under risk: At
least as far as economic matters are concerned, humans rarely
behave according to the prescriptions of statistical decision
theory. Optimal behavior—maximization of expected utility—
can be achieved only if one is able to evaluate probabilities,
evaluate the expected utility of each possible line of action, and
choose the action with the maximum expected utility. In our
experiments we test only the first of these three abilities: the
estimation of uncertainty. Observers judged comparative risk:
No further computation was needed beyond judging which of
two probabilities is larger. Yet some observers seem to display
biases in their perception of risk: ZDC in the first experiment
and BD in the second are distinctly suboptimal in their choice
patterns. They show relative miscalibration, misjudging the effect
of a certain manipulation on their performance. For example,
in experiment 1 ZDC exhibits relative overconfidence in un-
crowded stimuli: She favors uncrowded stimuli despite the fact
that choosing crowded ones would yield a higher probability of
responding correctly. Note that this can be equally well charac-
terized as “overconfidence in uncrowded stimuli” or “under-
confidence in crowded stimuli.” In experiment 2, BD displays
a pattern of miscalibration favoring masked stimuli. This mis-
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Fig. 5. Idealized theoretical predictions for observer DU. We plot a response surface, as in Fig. 4. The Inset corresponds to the range of contrasts we tested
the observer on (the exact range differed between observers). (Left) Contrast heuristic. The observer chooses the crowded stimulus whenever it has higher
contrast than the uncrowded one. (Center) Crowdedness heuristic. The observer systematically chooses the uncrowded stimulus. (Right) Performance-based
strategy. The observer chooses the crowded stimulus only if it affords higher expected performance.

Fig. 6. Stimuli used in experiment 2. In experiment 2 the observer chose
between masked and unmasked stimuli that differed in eccentricity. The un-
derlying psychophysical task used Landolt’s C stimuli is that the gap in the circle
could be facing either up or down. Because stimuli were displayed at a random
eccentricity, they were preceded by a cue that indicated the location the
stimulus would appear in. The stimulus was flashed briefly immediately after
the cue. In themasked condition, the stimulus was followed directly by a noise
mask. In the unmasked condition, a blank interval (called the interstimulus
interval, ISI), was inserted between the stimulus and the mask.
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calibration may be related to the finding that in metacontrast
masking (19), observers evaluate their level of awareness dif-
ferently at equal performance levels but different asynchronies
between target and mask.
The relative miscalibration found here should not be confused

with an absolute miscalibration of probability judgments (20).
Many studies have documented a widespread bias of absolute
overconfidence: On average, people overestimate their proba-
bility of success in a task (21). Whereas the original experiments
that uncovered overconfidence used general-knowledge tests,
this finding holds in the motor and sensory domains as well (22,
23), although sometimes underconfidence is reported as well
(24). The task used here sidesteps the issue by asking observers
to choose the less uncertain of two stimuli. It does not matter if
observers overestimate or underestimate their probability of
success, because we require them to make comparative judg-
ments. We expect an objective task such as the one used here to
measure more robust effects than the ones obtained from con-
fidence ratings, which are subject to uncontrollable variability
between observers and over time (20, 25).
We set up a task that is drastically simple—from the observer’s

point of view—compared with most decision-making tasks. The
cost is that we lose the ability to address significant issues of
higher-level decision making, biases and heuristics. What we gain
is direct access to the causes of visual uncertainty, letting us
address the question of what makes observers perceive risk in
visual decision making. As far as this study is concerned the
Bayesian framework is qualitatively consistent with the data, but
what of the cases when evaluation of visual uncertainty seems to
break down completely?
Eyewitness testimony is a case in point: In experimental

studies, the correlation between eyewitnesses’ confidence and
their actual performance is found to be rather poor (26). How-
ever, to a large extent, this poor correlation seems to be attrib-

utable to memory biases rather than to poor evaluation of visual
uncertainty (27). Potentially more troubling are cases of reported
decorrelations between confidence and performance following
visual manipulations. In change blindness tasks, observers over-
estimate their capacity to detect changes, in a phenomenon
called “change-blindness blindness” (28). This result is a strong
challenge to the Bayesian viewpoint, because to a Bayesian ob-
server any factor that impacts performance in a significant way
ought to be taken into account in the assessment of confidence.
One potentially important difference between the phenomena

above and our experiment is that we use ecologically valid
sources of uncertainty: The visual system has no choice but to
cope with low contrast and eccentricity, whereas, for example,
change blindness involves large objects suddenly going missing,
a situation rarely encountered outside of the Bermuda triangle.
A possibility is then that we learn only to deal appropriately with
the uncertainty that matters (29).
However, a truly probabilistic system must show a consider-

able degree of sophistication. Here we ask observers to compare
only two instances of the same visual task. But what if observers
had to make judgments across modalities or across visual tasks?
A probabilistic system knows when making, say, a visual judg-
ment is more likely to be correct than an unrelated auditory
judgment. But can observers do that? In other words, is there
a single currency for uncertainty in the brain? Probabilistic sys-
tems also evolve over time, revising their estimation of un-
certainty. Although a lot is now known about changes in
performance during perceptual learning (30), there is a relative
paucity of results on how these changes may interact with judg-
ments of confidence, especially during rapid learning (31).
Our results provide a lower bound for the sophistication of

confidence evaluation. The presence of sophisticated evaluation
mechanisms lends only indirect support to the Bayesian hypothe-
sis, and much more research is needed to determine to what

Fig. 7. Results for the mixed condition in experiment 2. The same general format as in Fig. 4 is followed. The proximity of a stimulus is defined as the
opposite of eccentricity. Stimuli with proximity 1 stand next to the fixation cross, and stimuli with proximity 0 are as far from the fixation cross as possible on
the monitor used (corresponding to 17.9° of eccentricity). Eccentricity plays the same role here as contrast does in experiment 1. Observers chose between
masked and unmasked stimuli, and we plot the probability of choosing the masked one. Again, we would expect that if observers followed the strategy of
always picking the stimulus with lower eccentricity, the green dashed line should separate the blue and red regions. The black line represents the line of equal
expected performance, with bootstrap 10% and 90% quantiles shown as dashed lines.

Table 1. Probability of occurrence of the three trial types

Baseline, % Contrast only, % Mixed, %

37.5 37.5 (18.75 of CC trials + 18.75 of UU trials) 25 (12.5 CU, 12.5 UC)

CC, both stimuli crowded; CU, left-hand stimulus crowded, right-hand uncrowded; UC, left-hand stimulus
uncrowded, right-hand crowded; UU, both stimuli uncrowded.
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extent the brain behaves as a probabilistic system. We believe
nonetheless that a methodologically rigorous investigation of
confidence judgments in perception will be essential to un-
derstanding the computational mechanisms at work in the
visual system.

Materials and Methods
Experiment 1. Stimuli. The stimuli were composed of five Gabor patches
arranged on a cross (Fig. 1). We refer to the central patch as the target and to
the others as distractors. The orientation of the target was either 15°
clockwise or 15° counterclockwise of the vertical. The distractors had vertical
orientation in the crowded condition (C) and horizontal orientation in the
uncrowded condition (U). The contrast of the distractors was set at 50%,
and the contrast of the target was varied as described in SI Materials
and Methods.

Stimuli were presented at an eccentricity of 12.5° of visual angle. They
appeared left or right of the fixation cross at a random position along two
semicircles of angular length 90° (Fig. S6). The individual patches in the
stimuli subtended 0.4° of visual angle (SD of the Gaussian envelope).
Observers. Six observers took part in the experiment. All observers had
normal or corrected-to-normal eyesight and were completely naive to the
purpose of the experiment. Observers were financially compensated for
their participation.
Procedure. Observers ran a total of five sessions. In the first session they were
familiarized with the orientation discrimination task (SI Materials and
Methods) and then ran a pretest designed to measure their performance in
orientation discrimination (SI Materials and Methods). In the remaining four
sessions they ran the main experiment. All sessions lasted <1 h.

In the main experiment two stimuli appeared successively in each trial.
Observers were instructed to select the stimulus they felt they were more
confident about (which one they were more comfortable with making an
orientation judgment). They selected a stimulus using the keyboard and then
indicated, again using the keyboard, the perceived orientation of the target
patch in the stimulus they had selected.

One stimulus was displayed to the left of fixation and the other to the
right. The order of appearance was randomized, and so was the orientation
of the targets. We varied two factors: the contrast of the targets and the
orientation of the distractors.

The baseline case occurred when the two stimuli displayed in one trial
had identical distractor orientation and identical target contrast. In the
baseline case there is no intrinsic value in picking one stimulus over the
other. The contrast-only case occurred when the two stimuli had distractors
with the same orientation but the targets had different levels of contrast. In
the contrast-only case there is a benefit in choosing the stimulus with the
higher contrast. In the mixed case, stimuli differed in both distractor ori-

entation and target contrast. The probability of occurrence of those three
trial types is given in Table 1. The contrast level of stimuli was chosen among
12 possible levels: 6 levels for crowded stimuli and 6 for uncrowded stimuli.

Feedback was given every 5 trials: Observers were told on how many trials
they responded correctly (of the previous 5). Observers ran the experiment in
four consecutive sessions of 800 trials. Sessions were divided into blocks of 100
trials, and observers were instructed to take short breaks between blocks
(minimum duration 10 s).

To minimize the possibility that observers were simply learning over time
how to choose appropriately between stimuli from the feedback they re-
ceived (but still provide somemotivation for them tomaximize performance),
we limited feedback to once every 5 trials.We also ran an additional observer,
NM, who received feedback only every 20 trials, including in the training
period. The results are essentially the same, as shown in Fig. 5, which excludes
the possibility that feedback learning could explain our data.

Experiment 2. The methods for experiment 2 are identical to those for ex-
periment 1 (replacing “contrast” with “eccentricity” and “crowded” with
“masked”), except where indicated otherwise.
Stimuli and mask. We used Landolt’s C as a stimulus (Fig. 6). We used up/down
orientations instead of the more traditional left/right because of the po-
tential confusion between choosing the less uncertain stimulus (which was
a left/right judgment) and the orientation task. The stimulus subtended 2.6°
of visual angle. Before the stimulus appeared, a cue was displayed at its
future location. The cue was a square frame of width 2.9°.

Stimuli appeared within the area delimited by the frame. They were
displayed for 80 ms and then followed immediately either by a noise mask or
by a blank ISI (duration 250ms) followed by a noise mask. The noise mask was
a square region of white noise (width 2.9°). To eliminate variations in dif-
ficulty caused by variations in the mask, the mask was identical for the
whole experiment and all observers.

The range of eccentricities used differed between participants (SIMaterials
and Methods). The maximum eccentricity displayable on the monitor
was 17.9°.
Observers. Six observers took part in the experiment. None had participated
previously in experiment 1.
Procedure. The overall procedure is identical to that of experiment 1. For
details please refer to SI Materials and Methods and Table S1.
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